Смекни!
smekni.com

«Применение информационных технологий при построении моделей узлов электроснабжения самолётов» (стр. 2 из 3)

Специфичность условий эксплуатации, а также важность и сложность функций, выполняемых всем комплексом электрооборудования ВС, обусловливают высокие тактико-технические требования, предъявляемые к нему. Основными из них являются:

· надежность и безотказность работы в различных условиях полета;

· минимальная масса и габаритные размеры без ущерба надежности работы и при удобстве эксплуатации;

· высокая механическая прочность (кроме обычных требований, к электрооборудованию ВС предъявляют дополнительные требования – устойчивость против вибраций. Считается, что элементы электрооборудования должны выдерживать динамические нагрузки, создаваемые ускорениями до 15 g);

· высокая электрическая прочность (она определяется в основном требованиями к изоляции, а также к допустимым расстояниям между токоведущими частями и металлической массой по поверхности изоляции и по воздуху). Электрическая прочность характеризуется значением напряжения (для проводов – 300 В, генераторов – 1000 В, для электродвигателей, коммутационной аппаратуры, установок обогрева – 500 В) и сопротивлением изоляции (оно должно быть в пределах от 1 до 5 МОм в зависимости от назначения элемента);

· высокая термическая прочность (для нее установлены допустимые перегревы над температурой окружающей среды от –60 до + 80°С при нормальном атмосферном давлении). Значения перегрузок определяют в зависимости от рода, назначения и характера работы оборудования. Кроме того, провода и коммутационная аппаратура, длительно работающие, должны выдерживать 200% перегрузки в течение 5 мин за 2 ч работы, электродвигатели и аппаратура, работающие в повторно-кратковременном режиме – 100%-ную нагрузку при удлиненном вдвое рабочем периоде, лампы и фары – напряжение 115% номинального в течение 5 мин (лампы) и 1 мин (фары);

· высокая химическая стойкость, предусматривающая в основном уменьшение коррозии металлических частей под действием влаги, паров топлива и масла (поскольку пары топлива и масла вредно влияют на изоляцию, ее изготовляют из материалов, устойчивых к ним);

· удобство в обращении, безопасность в отношении пожара и взрыва;

· независимость работы электрооборудования от положения ВС в пространстве, скорости полета и ускорений;

· независимость работы электрооборудования от изменения параметров окружающей среды;

· простота ухода и эксплуатации;

· относительно низкая стоимость.

Анализ тенденций развития систем электроснабжения отечественных и зарубежных самолетов гражданской авиации показывает, что установленная мощность источников электрической энергии в ближайшее десятилетие достигнет 250–300 кВ-А. В качестве первичной системы на основных типах самолетов будет использоваться система переменного трехфазного тока напряжением 200/115 В частотой 400 Гц. Источниками энергии останутся бесконтактные генераторы с вращающимися выпрямителями, дополненные жидкостными (масляными) системами охлаждения, которые работают по замкнутой схеме.

Одним из перспективных путей уменьшения массы системы энергоснабжения (СЭС) является использование так называемого интегрального привода генератора, а в дальнейшем и генераторов, встроенных в авиадвигатели. Уже сейчас удельная масса лучших образцов интегральных приводов составляет 0,54 кг/(кВ-А), среднее время безотказной работы достигает 12000–14000 ч. В системах переменного тока со статическими преобразователями генератор переменного тока переменной частоты 1200–3200 Гц и статический преобразователь конструктивно объединены в одном корпусе (интегральная конструкция), что позволяет интенсивно охлаждать преобразователь и стабилизировать выходное напряжение по каждой фазе в отдельности.

Для самолетов с установленной мощностью 400–500 кВ-А возможен переход на системы трехфазного переменного тока постоянной частоты 400 Гц с напряжением 400/230 В, что позволит использовать в системе распределения электрической энергии провода меньшего сечения.

Создание бесконтактных генераторов постоянного тока с напряжением до 300 В и мощностью до 60 кВ-А не вызывает особых технических трудностей. Сложнее обстоит дело с созданием бесконтактных двигателей постоянного тока на 30 кВт и полупроводниковых коммутационных аппаратов на токи в сотни ампер и с допустимыми массовыми и габаритными показателями. При разработке электрических двигателей большое внимание уделяется использованию постоянных магнитов из самарий-кобальта. Разработка бесконтактной коммутационной аппаратуры связана с использованием тиристоров (уже имеются тиристоры на токи в несколько тысяч ампер) и главным образом полевых транзисторов. Применение СЭС постоянного тока повышенного напряжения позволит снизить массу сети на 70%[1].

1.1. САМОЛЕТНЫЕ ГЕНЕРАТОРЫ ПЕРЕМЕННОГО ТОКА

Все потребители электроэнергии на ВС можно разделить на четыре группы:

· безразличные к роду тока;

· требующие для своего питания переменный ток, но допускающие отклонения частоты в определенных пределах;

· требующие для своего питания переменный ток стабильной частоты;

· постоянного тока.

Первые три группы потребителей по использованию электрической мощности являются основными. Если перевести на переменный ток и электропривод, который еще работает на постоянном токе, система переменного тока может удовлетворять около 95% потребителей мощности и только 5% мощности необходимо преобразовать в постоянный ток. С точки зрения упрощения системы электроснабжения, унификации электроустановок и получения возможности параллельной работы генераторов переменного тока наиболее целесообразной является система переменного тока стабильной частоты.

Сравнительно недавно для питания всех потребителей переменного тока использовались электромашинные преобразователи постоянного тока в переменный. Сейчас такие преобразователи в большинстве случаев, особенно на тяжелых самолетах и вертолетах, обслуживают только те потребители, которые требуют стабильной частоты и служат аварийными источниками. Питание же ряда мощных потребителей, безразличных к роду тока или требующих для своего питания переменный ток, допускающий изменение частоты, осуществляется от генераторов переменного тока нестабильной частоты.

Применение синхронных генераторов нестабильной частоты позволило за счет перевода ряда потребителей на питание от них уменьшить устанавливаемую мощность генераторов постоянного тока, а следовательно, облегчить условия коммутации на высоте и улучшить их охлаждение. Кроме того, уменьшились мощность и количество преобразователей постоянного тока в переменный, имеющих низкий коэффициент полезного действия и относительно большую массу.

На ВС синхронные генераторы получают вращение от привода, который обеспечивает постоянную частоту вращения ротора, что позволяет применять параллельную работу синхронных генераторов и повысить надежность работы таких систем[1].

1.2. НАЗНАЧЕНИЕ, ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ, УСТРОЙСТВО И РАБОТА ГЕНЕРАТОРОВ ПЕРЕМЕННОГО ТОКА

Генератор ГТ-40ПЧ6 питает потребители трехфазным током напряжением 208 В, стабилизированный частотой 400 Гц.

Этот генератор — синхронная бесконтактная бесщеточная машина со встроенными возбудителем, подвозбудителем и блоком вращающихся выпрямителей. Его основные узлы: корпус, ротор и щит.

Корпус генератора выполнен в виде моноблока из магниевого сплава. На внутренней поверхности корпуса расположены продольные ребра, повышающие его жесткость и образующие каналы для прохода охлаждающего воздуха. Со стороны привода в корпусе есть окна для выхода охлаждающего воздуха. На внешней поверхности корпуса установлена коробка со штепсельным разъемом, в ней блок токовых трансформаторов БТТ-3 дифференциальной защиты генератора и вывод силовой нейтрали. К штепсельному разъему подведены выводные концы подвозбудителя и обмоток блока трансформаторов тока. В корпус запрессованы статор генератора с рабочими обмотками, магнитопровод возбудителя с обмоткой возбуждения и статор подвозбудителя.

Ротор генератора состоит из полого стального вала ступицы, на которую напрессован индуктор генератора с обмоткой возбуждения, ротор возбудителя с обмоткой и блок кремниевых выпрямителей, состоящий из шести диодов Д-232Л и шестнадцатиполюсного постоянного магнита, являющегося индуктором подвозбудителя. Подвозбудитель представляет собой синхронный генератор с неподвижными обмотками РОП трех фаз переменного тока, расположенными в статоре и соединенными «звездой» без выведенного нулевого провода. Его концы фаз подключены к выводам 4, 5, 6 ШР генератора. Внутри полого вала находится гибкий вал и демпферная муфта с пружиной. Гибкий вал имеет шлицованный хвостовик для соединения генератора с приводом авиадвигателя. Демпферная муфта дискового типа, диски муфты через один связаны с полым или гибким валом. Под действием пружины диски прижаты друг к другу и пробуксовывают при превышении крутящего момента.

На корпусе расположена клеммовая колодка, в которой находятся разъемы А, В, С выводных концов обмотки статора генератора. К. корпусу прикреплен патрубок для подвода охлаждающего генератор воздуха.

Принцип работы генератора заключается в следующем. После запуска авиадвигателя начинает вращаться ротор генератора, при этом вращается шестнадцатиполюсный постоянный магнит (рис. 1). При вращении ротора магнитный поток индуктора пересекает витки обмотки подвозбудителя и наводит в них переменную ЭДС, которая через блок регулирования напряжения БРН-208М7А подается на обмотку возбуждения возбудителя (ОВВ).

Возбудитель генератора – синхронный генератор индукторного типа с встроенным блоком выпрямителей. Рабочая обмотка переменного тока возбудителя (РОВ) расположена на роторе. Обмотка ОВВ расположена в статоре, состоящем из двух литых магнитопроводов. У каждого магнитопровода восемь зубцов. Чередуясь друг с другом, они образуют восемь пар полюсов. Магнитный поток, пересекая витки обмотки РОВ, наводит в ней переменную ЭДС. Последовательно с обмотками фаз возбудителя включены шесть кремниевых выпрямителей. Переменный ток, создаваемый обмоткой РОВ, выпрямляется диодами и питает обмотку возбуждения (ОВ) генератора. Обмотка ОВ расположена на явно выраженном восьмиполюсном вращающемся роторе. В полюсные наконечники уложена демпферная обмотка.