Смекни!
smekni.com

Лефевр В. А. Конфликтующие структуры. Издание второе, переработанное и дополненное (стр. 14 из 31)

Работа системы в условиях противодействия человека. Методика эксперимента

Устройство, которое мы изготовили, состоит из трех блоков (рис. 39). Блок 1 табло, на котором изображен лабиринт, в узлах которого находятся две лампочки: зеленая и желтая. Выходами из лабиринта считаются пять узлов, расположенных на периферии. Перед человеком-испытуемым ставилась задача не выпустить «путника», движение которого изображается перемещением желтого огонька по лабиринту. Путник не имеет информации о том, где находятся выходы, а также не обладает памятью. Он совершает перемещения только после того, как человек с помощью специального кнопочника (блок 2) дает ему указания. Путник может перемещаться из данного узла только в один из соседних. Человек видит указание, которое он дал путнику, как вспышку зеленой лампочки. Это указание передается в блок 3, который представляет собой программное устройство, управляющее движением путника.

2- Кнопочник

Рис. 39.

Программа, управляющая движением путника, построена на таком принципе. В каждом узле путник может совершать реакции двух типов на указания, которые ему дает испытуемый. Первая реакция: выполнение указания, т.е. перемещение в соседний узел, в котором зажглась зеленая лампочка. Вторая реакция: выбор узла, противоположного указанному. В программном устройстве находится таблица противоположных узлов*.

Программа, управляющая движением путника, может быть представлена как последовательность целых чисел с чередующимися знаками. Нами была испытана следующая программа

+5 —6 +2 —4 +4—1 +1 —2 +4 —3 +2 —1 +1 —3 +4 —3 +4—2 +1 —1 +3 —2 +3 —4 +2 —1 +5 —3.

Знак перед числом означает тип реакции: «+»—выполнение указания, «—» — выбор узла, противоположного указанному; абсолютная величина числа — количество «послушаний» или «непослушаний», выполняемых подряд.

Эта программа получена экспериментально и в процессе контрольного эксперимента уже не менялась. Задача, которую «решает устройство»—перемещение путника из центрального узла к одному из выходов.

На рис. 40 изображен лабиринт, в котором протекает борьба. Путник первоначально находится в узле 13; узлы 1, 5, 9, 24 и 26 — выходы из лабиринта.

Методика эксперимента заключается в следующем. Испытуемый садится на стул перед табло. Рядом находится кнопочник. Экспериментатор дает инструкцию: «Перед вами—лабиринт. В лабиринте живет точка-путник (в узле 13 вспыхивает желтая лампочка). Точка может перемещаться по линиям, соединяющим узлы (точка из узла 13 перемещается в соседний узел и возвращается обратно). Перед точкой стоит задача — выйти из лабиринта. Ворота окрашены красной краской. Точка не знает, по каким направлениям находятся ворота; кроме того, она не обладает памятью и не запоминает те узлы, в которых она уже была. Вы можете давать ей указания зеленой лампочкой (в соседнем узле вспыхивает зеленая лампочка). Перед

Рис. 40.

вами стоит задача давать точке такие указания, чтобы она как можно дольше не выбралась из лабиринта. Если вы продержите точку в лабиринте в течение 25 ходов, то вы побеждаете. В противном случае — побеждает точка. Относитесь к точке просто как к живому человеку, который хочет выбраться из лабиринта, а вы стремитесь его не выпустить».

Некоторые испытуемые задают вопрос о том, как точка реагирует на указания. Экспериментатор отвечает, что сам он этого не знает, что программа «зашита» в приборе, что в принципе точка ведет себя так, как ей самой заблагорассудится. После этого начинают игру. Во времени испытуемый не ограничивается. Экспериментатор регистрирует каждую партию, записывая номер узла, в котором вспыхивает зеленая лампочка, а рядом — номер узла, в который переместился желтый огонек.

Отметим, что в нашем эксперименте блок 3 не был автоматическим. Он представлял собой кнопочник, с помощью которого помощник экспериментатора, имея перед глазами заранее составленный алгоритм и таблицу противоположных узлов, зажигал соответствующий желтый огонек.

Серия испытуемых, участвовавших в эксперименте, состояла из 32 студентов МЭИ, каждый из которых играл с устройством по две партии. Все партии были запротоколированы. Распределения количества партий по числу ходов, сделанных путником до выхода из лабиринта приведены в таблицах. Все партии продолжались до тех пор, пока путник не попадал в ворота.

Распределение первых партий

Длина партии (число ходов) 7 0 8 9 10 11 15 16 17 25 37 39 46 1
Количество партий 4 5 6 4 4 4 1 1 1 1

Распределение вторых партий

Длина партии (число ходов) 7 8 9 10 11 12 16 17 19 27 28 29 39 52 1 56 1 75
Количество партий 1 6 8 2 2 1 2 2 1 1 1 1 1 1

По этим данным была найдена средняя длительность блуждания путника в условиях противодействия. По первым партиям она оказалась равной 15 ходам, а по вторым — 18 ходам. Кроме того, по этим данным может быть построена функция распределения Р(т)= =К(т)/п, где п—число партий в серии, а К(т) —число тех партий в серии, длина которых не превышает т.

Работа устройства без противодействия человека

Модель, имитирующая работу устройства. Работа устройства без противодействия имитировалась на ЦВМ. На модели имитировалась игра устройства с противником, в которой оно работает по вышеприведенному алгоритму, а выбор указания противником равновероятен для каждого соседнего узла на каждом шаге.

Эту модель можно интерпретировать как блуждание без противодействия, когда действия путника таковы: в каждом узле он бросает жребий и, в зависимости от номера хода, либо следует выпавшему указанию, либо выбирает противоположный узел. Поскольку отношение противоположности не является взаимно однозначным, то употребление подобной стратегии в принципе должно изменить среднюю длину блуждания по сравнению с «обычным» блужданием, когда путник не пользуется отношением противоположности. В нашем случае отношение противоположности не в пользу путника. Руководствуясь подобным алгоритмом обработки жребия, путник увеличивает среднюю длительность своего пребывания в лабиринте по сравнению со случайным блужданием. Среднее число ходов оказалось равным 27, а при случайном блуждании — 25.

Для доказательства факта оптимизации мы должны сопоставлять работу системы при противодействии (т.е. указания дает человек) с работой без противодействия, когда система сама бросает жребий, но руководствуется тем же алгоритмом, что и в игре с человеком. В принципе мы не можем сопоставлять работу системы при противодействии человека, когда система использует отношение противоположности, с работой системы при случайном блуждании, ибо нельзя исключить возможность, что оптимизация при игре с человеком достигается именно за счет особенностей таблицы противоположных узлов, которая перераспределяет вероятности, а не за счет противодействия. Но поскольку в нашем случае, пользуясь отношением противоположности, система блуждает дольше, мы будем сопоставлять работу системы при противодействии с работой системы при

случайном блуждании. Это вызвано тем, что для случайного блуждания легко построить интересующую нас функцию распределения. Построение функции распределения при случайном блуждании.

Пусть Ро(т) —вероятность того, что партия окончится за число ходов, не превышающее т' В нашем случае Ро(т) можно определить исходя из того, что .процесс 'блуждания представим в виде цепи Маркова (рис. 41).

Первому элементу этой цепи соответствует центральный узел— 13 (см. рис. 40); второму элементу — уровень, состоящий из узлов 7, 12, 14, 16, 17; третьему элементу соответствует уровень, состоящий из узлов 6, 8, 22, 15, 18; четвертому — уровень из узлов 3, 10, 11, 21, 23; пятому — уровень из узлов 2, 4, 19, 20, 25 и шестому — точки поглощения /, 5, 9, 24, 26. Данной цепи Маркова соответствует матрица А.

В силу соотношений, известных из теории цепей Маркова, вероятность того, что точка будет поглощена за число ходов, не превышающее 30, равна элементу а16 матрицы Am показатель степени, в которую следует возводить матрицу).

Сопоставление работы устройства в условиях противодействия и при отсутствии противодействия. Обсуждение результатов

Pис. 42.

В качестве среднего числа ходов путника при отсутствии противодействия нами взято число 25, которое является средней длиной блуждания. В условиях противодействия по первым партиям среднее число ходов оказалось равным 15, по вторым партиям—18. Эти данные позволяют сделать вывод, что система оптимизирует свою работу в результате противодействия человека. Общую картину работы системы хорошо иллюстрируют функции распределения (.рис. 42):

I—при случайном блуждании, II—по первым партиям, III—по вторым партиям. В качестве дополнительного критерия оптимизации может быть выбрана разность медиан. Медиана при случайном блуждания равна 19; медиана по первым партиям—11; медиана по вторым партиям — 10. Сдвиг медиан влево (см. рис. 42) при противодействии может рассматриваться как признак оптимизации.