Однако даже при небольшом числе участников рефлективные процессы имеют сложное строение, и необходим специальный аппарат, позволяющий сделать их предметом анализа.
Изобразим некоторый условный «плацдарм», на котором взаимодействуют три персонажа, в виде прямоугольника и трех кругов (рис. 1). Пусть в момент ti персонаж Х «осознал» ситуацию. Это значит, что у него возникла внутренняя картина плацдарма. Картина, изображения на рис. 1, оказалась перенесенной «внутрь» персонажа Х (рис. 2). Очевидно, что вся система изменилась: у нее появились новые элементы. Пусть в момент ti персонаж Y также произвел осознание сложившейся ситуации. Чтобы изобразить последний процесс, мы должны внутри круга Y перерисовать картину, изображенную на рис. 2 (результат этого «осознания» отображен на рис. 3), Если в момент ts осознание вновь создавшейся ситуации произвел Z, то мы должны были бы перерисовать все, изображенное на рис. 3, внутрь круга Z. Однако сделать это было бы уже трудно по чисто графическим причинам, да и оперировать с таким изображением крайне неудобно. Поэтому целесообразно ввести Специальный «алгебраический язык», который позволяет изображать подобные процессы любой сложности.
Будем изображать символом Т плацдарм, на котором действуют персонажи. Этому символу соответствует рис. 1. Картины этого плацдарма, которые могут лежать перед персонажами Х, Y и Z, обозначим соответственно Тх, Ту, Tz. Считается: «Т с позиции Х», «Т с позиции Y», «Т с позиции Z»). Элементы Тх, Ту, Tz возникают как результат осознания. На рис. 2 изображен случай, когда осознание 'произвел персонаж Х, но, разумеется, все сказанное справедливо для любого персонажа. Картины, которые есть у одних персонажей, могут отражаться другими. В результате возникают элементы Тху, Txz, Tyz и т.д. (читается: «Тх с позиции Y», «Тх с позиции Z», «Ту с позиции Z и т.д.»). Элементы с двумя индексами также могут отражаться,. в результате чего возникают элементы Тхуz, Тхzу, Тzху и т.д. Они читаются соответственно — «Тху с позиции Z» и т.д. Картина, которую некоторый персонаж имел в момент /i, может быть также осознана им, уже в момент t2 , причем осознана именно как картина, а не как некоторая «физическая реальность». Вследствие этого возникают элементы типа Тхх, Туу, .Тххх 'и т.д.
Теперь изобразим процесс взаимоотношения трех персонажей .на плацдарме. В момент fi в нашей модели никаких внутренних 'картин у персонажей нет (рис. 1). Системе s этом случае соответствует символ Т. Рефлексивную систему, изображенную на рис. 2, можно представить в виде суммы
Q1 = Т + Тх. (1)
Она содержит две компоненты: плацдарм и картину плацдарма, лежащую перед X.* Системе, изображенной на рис. 3, соответствует следующий многочлен:
Q2 = T + Tx + (T + Tx)y. (2)
Сумма, находящаяся в круглых скобках, это «Т+Тх с позиции Y», ей соответствует картина на рис. 2, перенесенная внутрь круга Y на рис. 3. Подобная символика устраняет трудности, возникающие при графическом изображении таких систем, и тем более трудности, возникающие при фиксации их в естественном языке. Рефлексивную систему после того, как очередное осознание произвел персонаж Z, мы теперь легко можем изобразить так:
Qз = T + Tx + (T + Tx)y + [T + Tx + (T + Tx )y]z. (3)
Представляется естественным ввести относительно правого индекса закон дистрибутивности, который позволит раскрыть скобки. Например, следующие выражения будут эквивалентными:
Т + Тх + (Т + Тх)у = Т + Тх + Ту + Тху.
Этот закон может быть интерпретирован двумя способами. Вынесение индекса за скобку можно рассматривать с позиции «внешнего исследователя». В этом случае внешний исследователь «выделяет» с помощью этой операции «внутренние миры» отдельных персонажей и, тем самым, получает возможность рассматривать эти внутренние миры в их целостности. Но из этого не следует, что у самих персонажей есть целостная картина. С другой стороны, вынесение индекса можно рассматривать именно как возникновение у персонажа целостной картины, т.е. это некоторая операция, происходящая «внутри» персонажа.
Кроме того, мы позволим репродуцировать слагаемые без нарушения эквивалентности многочленов. Например,
Т+Тх-=Т+Тх+Тх.
Это вызвано тем, что персонаж (или исследователь) не получает новой информации в результате репродуцировавший уже известного ему «текста».
Обратим внимание на то, что это изображение не позволяет получить информацию об адекватности отражения персонажами картин, лежащих перед другими персонажами. Например, пусть мы имеем два члена Тх и Тху. Персонаж Y может иметь как адекватное отражение Тх, так и принципиально неадекватное. Символика регистрирует лишь факт «существования» такого члена во внутреннем мире персонажа Y. Поэтому при употреблении символики необходим специальный комментарий, характеризующий степень адекватности с позиции внешнего исследователя.
Операторы осознания
Теперь мы введем специальный формализм для фиксации процесса осознания. Для этого мы должны найти формальный способ изображения перехода от выражения (1) к выражению (2), от выражения (2) к выражению (3) и т.д.
Многочлены, которые были введены, существенно отличаются от «обычных» многочленов с вещественными коэффициентами. Поэтому необходимо строго ввести тот .алгебраический объект, с которым мы будем иметь дело в дальнейшем. Исходными для построения формализма (для трех персонажей) являются символы х, у, z, Т и 1. Из этих символов составляются слова — конечные последовательности символов, например, х, ху, Тх, хуz и т.д. - Два слова считаются эквивалентными, если они отличаются только числом вхождения в них символа 1 (например, хху=хху). Таким образом, символ 1 можно вычеркивать из слов.*
Условимся пока рассматривать слова, не содержащие символа Т. Множество всех таких слов счетно. Перенумеруем их некоторым произвольным образом. Получим последовательность ai. Теперь мы можем ввести понятие многочлена.
Многочленом мы будем называть символическую сумму
где ai—элемент булевой алгебры, состоящей из двух элементов 0 и 1.
При заданной нумерации ai многочлен однозначно задается набором коэффициентов ai. Условимся в дальнейшем выписывать лишь те члены, коэффициенты перед которыми равны 1. Необходимо обратить внимание на отличие многочлена от отдельного слова. Если мы пишем, например, со==1, то это значит, что рассматривается многочлен:
00
1+ å(0ai) в котором только перед ai=l
i= 2
коэффициент отличен от нуля.
Теперь можно ввести операции сложения и умножения многочленов. Они вводятся так же, как и операции над «обычными» многочленами, с той лишь существенной разницей, что умножение оказывается некоммутативным. Нетрудно видеть, что умножение ассоциативно и выполняются правый и левый законы дистрибутивности:
w1(w2+w3)=w1w2+w1w3
w2+w3)w1=w1w2+w3w1
Каждому многочлену сопоставим в соответствие специфический многочлен Q=Tw. Многочлены и, как мы показали раньше, позволяют изображать состояния рефлексирующих систем, а многочлены w будут интерпретированы как операторы осознания.
Теперь мы можем выразить на алгебраическом языке процедуры превращения картинки на рис. 1 в картинку на рис. 2 и т.д. Для этого необходимо многочлен Т, выражающий содержание картинки на рис. 1, умножить справа на многочлен 1+х. Результатом такого умножения будет многочлен
Q'1=T(l+x)==T+Tx. (1')
Чтобы перейти далее к состоянию Q2. многочлен Q1 нужно опять-таки справа умножить на многочлен 1+у:
Q2=Т(1+х)(1+у)=Т+Тх+(Т+Тх)у. (2') расстояние Оз порождается умножением Q2 на 1+z:
Q3=T(l+x)(l+y)(l+z)=T+Tx+(T+Tx)y+[Т+Тх+(Т+Тх)у]z. (3')
Таким образом, той процедуре осознания, которую мы изобразили графически (она представляет собой схематизацию естественно-интуитивного понимания рефлексии), соответствует теперь алгебраическая операция умножения многочлена на многочлены 1+х, 1+у, 1+z.
Мы только что описали случай, когда персонажи производят осознание последовательно. Но легко изобразить и случай, когда осознание производят все три персонажа Одновременно. Оператор осознания будет таким: w=1+х+у+z, а эволюция многочлена, характеризующего состояния рефлексирующих систем, выразится соотношением Qn==T(1+x+y+z)n, где п—число осознаний. Подобное изображение процессов осознания значительно расширяет возможности исследования более сложных типов осознания, которые уже практически невыразимы в естественном и графическом языке.
Оператор, порождающий принцип максимина
Принцип максимина лежит в основе современной идеологии принятия решений. Он заключается в том, что принимающий решение должен гарантировать себе «минимальный проигрыш». Посмотрим, каково «рефлексивное строение» игроков, породившее эту идеологию.