Смекни!
smekni.com

Алексеев С. И. Концепции современного естествознания Москва 2003 (стр. 4 из 13)

В специальной теории относительности, созданной американским физиком А.Эйнштейном было установлено:

a) Всякое движение может определяться только по отношению к дру-

гим телам, взятым за системы отсчета.

b) Пространство и время взаимосвязаны, время является четвертой координатой для описания движения.

c) В любой инерциальной системе отсчета скорость света в вакууме имеет одну и ту же величину для любого направления.

d) Переход от одной инерциальной системы к другой при очень больших скоростях их относительного движения осуществляется с помощью преобразований Лоренца:

t - bx

x ¢ =


x - vt

1 - b 2 ,

y ¢ = y ,


z ¢ = z ,


t ¢ =


c

1 - b 2 ,

где x, y, z, t - координаты системы S;


x ¢, y ¢, z ¢, t ¢ - координаты системы


S ¢;


v - скорость системы


S ¢ в направлении оси x ,


лея


измеренная в системе S;

С - cкорость света в вакууме; b = v c .

При b ® 0 преобразования переходят в преобразования Гали-


(имеющими место в классической механике):


x ¢ =


x - vt ,


y ¢ = y ,


z ¢ = z ,


t ¢ = t .


В таких системах отсчета время течет одинаково (является инвариант-

ной величиной ).

В релятивисткой механике справедливы соотношения:

m


l ¢ = l 1 - b 2

, Dt ¢ =


Dt

,

1 - b 2

m¢ =


1 - b 2 ,

E ¢ =


E

1 - b 2

, т.е.


движение со скоростью близкой к скорости света в вакууме приводит к


замедлению времени t , cокращению длины


l , возрастанию массы m


и энергии E .


Движение со скоростью больше c

стают быть действительными ).


невозможно ( выражения пере-


При b ® 0 величины l, Dt , m, E


являются инвариантными.


Ключевые термины

- Инерциальные системы - Принцип относительности

- Преобразования Лоренца

-

Преобразования Галилея
- Инвариантность

-

Релятивизм
- Классическая механика

-

Релятивистская механика

8. Концепция необратимости и термодинамика.


Термодинамика как наука возникла из обобщения фактов,


описы-


вающих явление передачи, распространения и превращения тепла,т.е. тепло, возникшее в результате механической работы, нельзя снова пре- вратить в энергию для выполнения новой работы. С другой стороны, из- вестно, что часть тепловой энергии превращается в механическую рабо-

ту. Все эти факты нашли объяснение в законах термодинамики.

1 закон термодинамики. Тепло Q, полученное замкнутой систе- мой, идет на увеличение внутренней энергии D U системы и выполнение работы W, производимую системой против внешних сил:

Q= D U+W ,

где Q>0 - если тепло подводится к системе;

Q<0 - если тепло отводится от системы;

W>0 - если система производит работу;

W<0 - если над системой внешними силами совершается работа.


Классификация систем ( термодинамических ).

Закрытая термодинамическая система- это система, которая не

может обмениваться веществом с внешней средой. ( например, космиче-

ский корабль).

Открытая термодинамическая система- это система, которая может обмениваться веществом с внешней средой ( например, живые

организмы).

Замкнутая (изолированная) термодинамическая система- это система, которая не может обмениваться ни веществом, ни энергией с

внешней средой. (идеализированные системы).

Согласно 1 закону термодинамики в определенных термодинами- ческих системах могут протекать такие процессы, при которых полная энергия системы остается неизменной. Превращение тепловой энергии целиком в механическую работу не нарушает этот закон, однако, такой прцесс невозможен. Второй закон термодинамики еще больше ограни- чивает возможные процессы превращения.

2 закон термодинамики. Теплоту можно превратить в работу только при условии, что часть этой теплоты одновременно перейдет от горячего тепла к холодному( принцип действия тепловых двигателей). Чтобы теплота могла перейти от холодного тепла к горячему, необходи-

мо затратить механическую работу ( принцип действия холодильных машин ).

Согласно 2 закону термодинамики в замкнутой системе в отсутст-

вии каких-либо процессов теплота не может самопроизвольно перейти

от более холодных частей системы к более горячим.

Концепция “ тепловой смерти “. Выдвинута немецким физиком

Р.Клаузиусом (1822-1888), исходя из следующих постулатов:

1) Энергия Вселенной всегда постоянна.

2) Энтропия Вселенной всегда возрастает.

Энтропией называют параметр состояния системы, дифференциал которой равен


dS =


dQобр

T

,



где


dQобр - количество теплоты, полученное (или отданное) системой;

Т- температура теплоотдающего тела.


тает


При получении тепла системой ( dQ>0 ) энтропия системы возрас-


( dS>0 ), а если система отдает тепло ( dQ<0 ) , то ее энтропия убывает

( dS<0 ).

Поскольку понятие энтропии вводится в дифференциальном виде,

то ее значение может быть определено только с точностью до константы

(абсолютное значение определить невозможно).

В статистической физике энтропия связывается с вероятностью термодинамического состояния системы и является мерой упорядочен-

ности системы:

S ~ 1

P ,

где P- термодинамическая вероятность состояния системы.

Если Т=0, то P=1 , а если Т>0 , то Р<1 .

Таким образом, при повышении температуры термодинамическая вероятность состояния уменьшается, увеличивается хаотичность систе-

мы, энтропия возрастает.

Используя понятие энтропии, формулировка II закона термоди-

намики упрощается:

Энтропия замкнутой системы постоянно возрастает ( “стре-

ла времени” в замкнутых термодинамических системах ).Это означает,

что такие системы эволюционизируют в сторону увеличения в них хао-

са, беспорядка, пока не достигнут точки термодинамического равнове-

сия, в которой всякое производство работы оказывается невозможным.

Гипотеза Клаузиуса, основанная на представлении Вселенной за-

крытой системой, является абстракцией, не отражающей реальный ха- рактер природных систем, которые способны обмениваться энергией , веществом и информацией с окружающей средой, т.е. являются откры- тыми системами. В открытых системах также производится энтропия, т.к. имеют место необратимые процессы, но в отличие от закрытых сис- тем она не накапливается,а выводится в окружающую среду. Открытые системы живут за счет заимствования порядка из внешней cреды.

Ключевые термины

- Энтропия - Абсолютная температура

- Вероятность - Внутренняя энергия

- Порядок - Замкнутая система

- Хаос - Закрытая система
- Работа - Открытая система

- “тепловая смерть” - Термодинамика

- Тепло - Стрела времени


9. Концепция синергетики

Немецкий физик Г. Хакен ( род. 1927г. ) назвал синергетикой процессы самоорганизации, происходящие в лазере (в переводе с древ- негреческого cинергетика означает совместное действие или взаимодей- ствие ).

Условия протекания процессов самоорганизации в

системах

1) Процессы самоорганизации идут только в открытых систе-

мах, т.к. закрытые системы в соответствии с законами термодинамики имеют конечным итогом хаос (максимальный беспорядок ) или дезорга- низацию.

2) Система должна находиться достаточно далеко от точки термодинамического равновесия (в этой точке система имеет макси- мальный беспорядок ), из которой выход затруднен.

3) Упорядочивание структуры системы (организация нового по-

рядка ) происходит засчет незначительных отклонений ( флуктуаций ) от первоначального состояния, возрастанию амплитуды флуктуаций с те- чением времени, постепенного расшатывания прежнего порядка и в ре- зультате установлению нового порядка (принцип образования порядка через флуктуации ). Такой процесс методичной раскачки системы, со- провождающийся возрастанием амплитуды флуктуаций, свидетельству-

ет о наличии в системе положительных обратных связей.

4) Отличительная черта математических моделей, описывающих открытые системы и процессы самоорганизации- их существенная не-