Смекни!
smekni.com

«Компьютерные сети» (стр. 3 из 7)

1.3 По типу сетевой топологии

1.3.1 Шина

1.3.1.1 Основные сведения

Топология типа шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала. (Рисунок 1.3.1).


Рисунок 1.3.1 - Топология сети типа «шина»

1.3.1.2 Работа в сети

Отправляемое рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет — кому адресовано сообщение и если ей, то обрабатывает его. Для того, чтобы исключить одновременную посылку данных, применяется либо «несущий» сигнал, либо один из компьютеров является главным и «даёт слово» остальным станциям.

При построении больших сетей возникает проблема ограничения на длину связи между узлами, в таком случае сеть разбивают на сегменты. Сегменты соединяются различными устройствами — повторителями, концентраторами или хабами. Например, технология Ethernet позволяет использовать кабель длиной не более 185 метров.

1.3.1.3 Достоинства

  • Небольшое время установки сети
  • Дешевизна (требуется меньше кабеля и сетевых устройств)
  • Простота настройки
  • Выход из строя рабочей станции не отражается на работе сети

1.3.1.4 Недостатки

  • Любые неполадки в сети, как обрыв кабеля, выход из строя терминатора полностью уничтожают работу всей сети
  • Сложная локализация неисправностей
  • С добавлением новых рабочих станций падает производительность сети

1.3.2 Звезда

1.3.2.1 Основные сведения

Звезда — базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно сетевой концентратор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило "дерево"). (Рисунок 1.3.2).

Рисунок 1.3.2 - Топология сети типа «звезда»

1.3.2.2 Работа в сети

Рабочая станция, которой нужно послать данные, отсылает их на концентратор, а тот определяет адресата и отдаёт ему информацию. В определённый момент времени только одна машина в сети может пересылать данные, если на концентратор одновременно приходят два пакета, обе посылки оказываются не принятыми и отправителям нужно будет подождать случайный промежуток времени, чтобы возобновить передачу данных. Этот недостаток отсутствует на сетевом устройстве более высокого уровня - коммутаторе, который, в отличие от концентратора, подающего пакет на все порты, подает лишь на определенный порт - получателю. Одновременно может быть передано несколько пакетов. Сколько - зависит от коммутатора.

1.3.2.3 Достоинства

  • Выход из строя одной рабочей станции не отражается на работе всей сети в целом
  • Хорошая масштабируемость сети
  • Лёгкий поиск неисправностей и обрывов в сети
  • Высокая производительность сети (при условии правильного проектирования)
  • Гибкие возможности администрирования

1.3.2.4 Недостатки

  • Выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом
  • Для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий
  • Конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе

1.3.3 Кольцо

1.3.3.1 Основные сведения

Кольцо — базовая топология компьютерной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутую сеть. (Рисунок 1.3.3).

Рисунок 1.3.3 - Топология сети типа «кольцо»

1.3.3.2Работа в сети

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе. Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков — пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

1.3.3.3 Достоинства

  • Простота установки
  • Практически полное отсутствие дополнительного оборудования
  • Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий

1.3.3.4 Недостатки

  • Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети
  • Сложность конфигурирования и настройки
  • Сложность поиска неисправностей

1.3.4 Решетка

1.3.4.1 Основные сведения

Решётка — понятие из теории организации компьютерных сетей. Это топология, в которой узлы образуют регулярную многомерную решетку. При этом каждое ребро решетки параллельно ее оси и соединяет два смежных узла вдоль этой оси.

Одномерная «решётка» — это цепь, соединяющая два внешних узла (имеющие лишь одного соседа) через некоторое количество внутренних (у которых по два соседа — слева и справа). При соединении обоих внешних узлов получается топология «кольцо». Двух- и трехмерные решетки используются в архитектуре суперкомпьютеров.

Сети, основанные на FDDI используют топологию «двойное кольцо», достигая тем самым высокую надежность и производительность. Многомерная решётка, соединеная циклически в более чем одном измерении, называется «тор».

1.3.4.2 Достоинства

  • Высокая надежность

1.3.4.3 Недостатки

  • Сложность реализации

1.3.5 Смешанная топология

Смешанная топология — топология преобладающая в крупных сетях с произвольными связями между компьютерами. В таких сетях можно выделить отдельные произвольно связаные фрагменты (подсети), имеющие типовою топологию, поэтому их называют сетями со смешаной топологией. (Рисунок 1.3.4).

Рисунок 1.3.4 - Топология сети типа «смешанная»

1.3.6 Полносвязная топология

Полносвязная топология — топология компьютерной сети , в которой каждая рабочая станция подключена ко всем остальным. Этот вариант является громоздким и неэффективным, несмотря на свою логическую простоту. Для каждой пары должна быть выделена независимая линия, каждый компьютер должен иметь столько коммуникационных портов сколько компьютеров в сети. По этим причинам сеть может иметь только сравнительно небольшие конечные размеры. Чаще всего эта топология используется в многомашинных комплексах или глобальных сетях при малом количестве рабочих станций. (Рисунок 1.3.5).

Рисунок 1.3.5 - Топология сети типа «полносвязная»

1.4 По функциональному назначению

1.4.1 Сеть хранения данных

1.4.1.1 Основные сведения

Сеть хранения данных (англ. Storage Area Network) (SAN) — представляет собой архитектурное решение для подключения внешних устройств хранения данных, таких как дисковые массивы, ленточные библиотеки, оптические накопители к серверам, таким образом, чтобы операционная система распознала подключённые ресурсы, как локальные.

1.4.1.2 Типы сетей

Большинство сетей хранения данных использует протокол SCSI для связи между серверами и устройствами хранения данных на уровне шинной топологии. Так как протокол SCSI не предназначен для формирования сетевых пакетов, в сетях хранения данных используются низкоуровневые протоколы:

  • Fibre Channel Protocol (FCP), транспорт SCSI через Fibre Channel. Наиболее часто используемый на данный момент протокол. Существует в вариантах 1 Gbit/s, 2 Gbit/s, 4 Gbit/s, 8 Gbit/s и 10 Gbit/s.
  • iSCSI, транспорт SCSI через TCP/IP.
  • FCoE, транспортировка FCP/SCSI поверх "чистого" Ethernet.
  • FCIP и iFCP, инкапсуляция и передача FCP/SCSI в пакетах IP.
  • HyperSCSI, транспорт SCSI через Ethernet.
  • FICON транспорт через Fibre Channel (используется только мейнфреймами).
  • ATA over Ethernet, транспорт ATA через Ethernet.
  • SCSI и/или TCP/IP транспорт через InfiniBand (IB).

1.4.1.3 Совместное использование устройств хранения

Движущей силой для развития сетей хранения данных стал взрывной рост объема деловой информации (такой как электронная почта, базы данных и высоконагруженные файловые сервера), требующей высокоскоростного доступа к дисковым устройствам на блочном уровне . Ранее на предприятии возникали "острова" высокопроизводительных дисковых массивов SCSI. Каждый такой массив был выделен для конкретного приложения и виден ему как некоторое количество "виртуальных жестких дисков".

1.4.1.4 Преимущества

  • Совместное использование систем хранения упрощает администрирование и добавляет изрядную гибкость, поскольку кабели и дисковые массивы не нужно физически транспортировать и перекоммутировать от одного сервера к другому.
  • Возможность загружать сервера прямо из сети хранения. При такой конфигурации можно быстро и легко заменить сбойный сервер.

1.4.1.5 Топология сети

Растущие объёмы сетей хранения данных и различные виды их организации привели к необходимости разделения различных топологий СХД.