Смекни!
smekni.com

Методические указания к курсовому проектированию по дисциплине "проектирование автоматизированных систем управления непрерывными технологическими процессами" Часть 2 (стр. 5 из 14)

Технологическая схема контроля и корректировки показаний газо­анализаторов, приведена в [6, с. 227]; схема системы автоматического распределения дутья по формам доменной печи - в [6, с. 228]; схема управления температурой горячего дутья при различных режимах работы воздухонагревателей - в [6, с. 229].

В системе управления доменным процессом, в частности тепловым режимом плавки, целесообразно использовать УВМ. На первом этапе внедрения вычислительной техники в доменное производство в ее функции должны входить: централизованный контроль, обработка и представление в удобном для оператора виде всей необходимой для управления процес­сом информации. На втором этапе внедряются автоматизированные системы управления, функционирующие в режиме "советчика мастера" с использо­ванием математических моделей и алгоритмов управления доменным производством. В дальнейшем предусматривается возможность замкнутого автоматического управления процессом доменной плавки с применением ЭВМ.

В [6, с.230, 231] изображена функциональная схема АСУТП собственно доменной печи. В схеме основное внимание уделено регулированию теплового режима доменной плавки.

Для воздухонагревателей УВМ обеспечивает максимальный КПД, при этом посадка аккумулирует заданное количество теплоты на заданное время с минимальным расходом топлива. Схема АСУТП воздухонагревателей приведена [6, с. 232, 233].

АСУТП воздухонагревателей решает 3 основные задачи:

- определение оптимальной длительности составляющих цикла работы воздухонагревателей (длительности периода нагрева или дутья);

- выбор оптимальных параметров – температуры купола, расхода газа и закона их изменения в период нагрева воздухонагревателей;

- поиск оптимального режима работы блока – последовательного, попарно-паралельного или смешанного.

6. АСУТП СТАЛЕПЛАВИЛЬНОГО ПРОИЗВОДСТВА

Сталеплавильное производство включает в себя миксерное отделение. Автоматизация в миксерном отделении сводится к автоматическому взвешиванию и учету чугуна, поступающего из доменного цеха и подаваемого в мартеновскую печь или в конвертер; определению состава чугуна сливаемого из миксера; измерению температуры чугуна при сливе из миксера.

Функциональная схема автоматизации теплового режима миксера, отапливаемого природным газом, показана [6, с. 89].

При выплавке стали в мартеновских печах происходит выжигание из чугуна кремния, марганца, фосфора, серы и углерода. Крупные современные мартеновские печи работают скрап-рудным процессом, при котором металлическая часть шихты состоит из 50…60% жидкого чугуна и 40…50% железного лома.

Функциональная схема управления тепловым режимом мартеновской печи показана в [6, рис. 90, с.238, 239]. Некоторые динамические характеристики мартеновских печей приведены в [6, приложение, с. 347], перечень основных автоматически контролируемых параметров мартеновской плавки - в [6, табл. 51].

Температура свода рабочего пространства измеряется радиационными пирометрами, установленными в водоохлаждаемой арматуре и свизированными на свод через амбразуры в задней стенке. Более точные зна­чения температуры свода позволяет получить шомпольный термозонд [6. с. 240 ].

Продукты сгорания анализируют с помощью автоматических газо­анализаторов или анализатора избыточного кислорода [6, с. 240].

Способы управления тепловой мощностью можно разделить на две группы: статическое программное и динамическое.

При статическом программном управлении на основании предваритель­ных исследований разрабатывают тепловую инструкцию, в которой заданы тепловая мощность и расходы различных видов топлива для каждого пери­ода плавки. На основании инструкции сталевар устанавливает задание отдельным регуляторам расхода топлива, корректируя их на основании соб­ственного опыта. Функцию управления выполняет сталевар, а локальные системы автоматики только поддерживают заданные расходы топлива [6, с. 238, 239].

К динамическим системам управления тепловой мощностью можно от­нести системы управления по ограничивающим факторам, в которых тепло­вая мощность поддерживается на максимальном уровне до тех пор, пока хотя бы один из ограничивающих факторов (температура свода, температу­ра насадок, содержание кислорода в продуктах сгорания и т.д.) не выйдет за допустимые значения.

Из динамических систем управления наибольшее распространение по­лучила система АВТЕР [6, с. 240. рис. 93 ]. В схеме применен принцип раздельного регулирования параметров теплового режима.

Задача регулирования горения в мартеновской печи - полное сжига­ние топлива всех видов (включая оксид углерода СО из ванны) в преде­лах рабочего пространства печи.

Регулирование горения по соотношению всех видов топлива и всех видов кислородоносителей применено в схеме автоматизации мартеновской печи [6, рис. 90, с. 238, 239] .

Двухванная печь состоит из двух рабочих пространств (двух ванн), в одном из которых производится продувка металла кислородом, в дру­гом - завалка и прогрев твердой шихты.

Выделяющийся при продувке металла СО из первой ванны поступает во вторую, дожигается там и отдает теплоту холодной шихте. Двухванная печь - кислородная печь, и поэтому дожигание СО и сжигание дополнительного топлива производится в техническом кислороде. Дополнитель­ным топливом служит природный газ, который подается на стационарные горелки, а иногда на подвижные фурмы. Двухванные печи не имеют ре­генераторов.

Функциональная схема управления тепловым режимом двухванной пе­чи приведена в [6, рис. 94, с. 243]; на ней показаны локальные систе­мы регулирования для правой ванны; аналогичные системы существуют и для левой ванны.

Дуговые сталеплавильные печи (ДСП) предназначены для выплавки легированных сталей, но в ряде случаев крупные печи сверхвысокой мощ­ности могут применяться и для выплавки стали рядовых марок. Теплота, необходимая для протекания процесса, поступает от электрических дуг, возникающих между ванной и тремя графитовыми электродами, опущенными через свод печи.

Основные параметры, автоматически контролируемые при плавке в ДСП приведены в [6, табл. 52, с. 244].

Одна из основных задач управления в ДСП - регулирование электри­ческой мощности. Обычно мощность регулируют в каждой фазе, используя электромашинные усилители [7, рис. 131 ].

В связи с широким применением кислорода для продувки ванны ДCП разработаны и применяются схемы автоматического управления продувкой [6, риc. 96, c . 245] . В схеме может быть использован сумматор, ко­торый будет давать команду на прекращение продувки и подъем фурмы после подачи в ванну заданного количества кислорода.

Для управления всей работой ДCП создаются АСУТП, обеспечивающие оптимальное ведение электрического и технологического режимов. В том числе применяется принцип программного управления мощностью.

Кислородно-конвертерный процесс с верхней продувкой заключается в продувке жидкого чугуна кислородом, подводимым к металлу сверху через сопла водоохлаждаемой фурмы.

В [6, табл. 53. с. 246] приведены основные параметры, контроли­руемые в кислородном процессе, а в [6, рис. 97 ] - локальные системы управления.

Полная автоматизация конвертерного процесса невозможна без при­менения ЭВМ, т.е. вне пределов АСУТП. В АСУТП конвертерного произ­водства стали можно рассматривать два основных принципа управления: статическое и динамическое.

Машины непрерывного литья заготовок (МНЛЗ) вертикального, ра­диального или криволинейного типов предназначены для получения заготовок (блюмов, слябов) без обжимных станков при разливке стали, вып­лавленной в конвертере, мартеновской или электросталаплавильной печи.

Функциональная схема системы управления МНЛЗ представлена в [6, рис. 98, с. 250].

АСУТП создаются во всех сталеплавильных производствах, особенно в электросталеплавильных и ковертерных. АСУТП в кислородно-конвертерном цехе состоит из двух подсистем управления процессом: выплавки ста­ли и непрерывной ее разливки.

Основные функции АСУТП выплавки и непрерывной разливки стали мо­гут быть сформулированы следующим образом.

I. Информационные и информационно-вычислительные функции.

II. Управляющие функции.

В целом АСУТП обеспечивает:

- слежение за технологическими процессами, положением и состоя­нием оборудования;

- автоматизированный и централизованный контроль и учет;

- выдачу управляющих сигналов в локальные системы автомати­ческого управления;

- выдачу текущей технологической информации оператору;

- печатание паспортов плавки и других документов.

Общая структурная схема вычислительного комплекса АСУ конвер­терным цехом показана в [6, рис. 99, с. 252 ].

7. АCУТП НАГРЕВАТЕЛЬНЫХ УСТРОЙСТВ ПРОКАТНЫХ ЦЕХОВ

Для нагрева слитков перед прокаткой на обжимных станах приме­няют регенеративные и рекуперативные нагревательные колодцы. Топли­вом обычно служит смешанный (теплота сгорания Q = 5500...8500 кДж/м3) либо природный газ. Воздух подогревают в кера­мических рекуператорах до 800...900 OC, смешанный газ - в металли-ческих рекуператорах до 250...300 °С. На колодцах с одной верхней горелкой отсутствуют дутьевые вентиляторы, а воздух для горения про­сасывается через рекуператор с помощью инжектирующего сжатого воз­духа, который подогревают в металлических рекуператорах до 150…300 °С.

Сортовые заготовки обычно нагревают в методических нагреватель­ных печах, отапливаемых природным газом, мазутом или смесью газов. Воздух для горения нагревают до 500...600 0С в керамических рекупера­торах. Рабочее пространство печей разбито на зоны с автономным отоп­лением: первой со стороны выдачи расположена томильная зона, затем 2-3 сварочные зоны (верхние и нижние) и, наконец, неотапливаемая мето­дическая зона.

Для нагрева круглых заготовок, а также различных фигурных изде­лий применяют многозонные кольцевые печи.