Применение переносных микроскопов дает возможность исследовать состояние и структуру поверхности материалов при увеличении. В сочетании со стробоскопом оптические методы позволяют исследовать подвижные детали.
Визуальная энтроскопия позволяет обнаружить дефекты на внутренних поверхностях объекта. Энтроскопы (видеобороскопы) для внутреннего обследования труднодоступных мест объекта включают в себя зонд из стекловолокна, с помощью которого исследователь может проникать вовнутрь объекта, и экран визуального наблюдения поверхности, а также принтер для видеозаписи исследуемой поверхности объекта. Применение оптических квантовых генераторов (лазеров) позволяет расширить границы традиционных оптических методов контроля и создать принципиально новые Методы оптического контроля: голографические, акустооптические.
Радиационные методы
Радиометрическая дефектоскопия - метод получения информации о внутреннем состоянии контролируемого объекта, просвечиваемого ионизирующим излучением. Метод основан на взаимодействии ионизирующего излучения с объектом и преобразовании радиационного изображения в радиографический снимок или запись этого изображения на запоминающем устройстве с последующим преобразованием в световое изображение. Проникающие излучения (рентгеновские, поток нейтронов, гамма и бета лучи), проходя через объект и взаимодействуя с атомами его материалов, несут различную информацию о внутреннем строении вещества и наличии в нем скрытых дефектов. Для обеспечения наглядности и воспроизведения внутреннего строения объекта применяют метод рентгеновской вычислительной томографии, основанный на вычислительной обработке теневых проекций, полученных при рентгеновском просвечивании объекта в различных направлениях. Наиболее распространенными в машиностроении радиационными методами являются рентгенография, рентгеноскопия, гамма-контроль. Их применяют для контроля сварных и паяных швов, литья, качества сборочных работ, состояния закрытых полостей агрегатов, дефектоскопии стенок аппаратов. Наибольшее применение нашли рентгеновские аппараты и гамма - дефектоскопы.
Радиоволновые методы
Радиоволновые методы основаны на регистрации изменения электромагнитных колебаний, взаимодействующих с контролируемым объектом. На практике получили распространение сверхвысокочастотные (СВЧ) методы в диапазоне длин волн от 1 до 100 мм. Взаимодействие радиоволн с объектом оценивают по характеру поглощения, дифракции, отражения, преломления волны, интерференционным процессам, резонансным эффектам. Эти методы применяют для контроля качества и геометрических параметров изделий из пластмасс, стеклопластиков, термозащитных и теплоизоляционных материалов, а также для измерения вибрации.
Тепловые методы
В тепловых методах в качестве диагностируемого параметра используется тепловая энергия, распространяющаяся в объекте, излучаемая объектом, поглощаемая объектом. Температурное поле поверхности объекта является источником информации об особенностях процессов теплопередачи, которые в свою очередь зависят от наличия внутренних и наружных дефектов, охлаждения объекта или его части в результате истечения среды и т. п.
Различают пассивные и активные методы теплового контроля. При пассивном контроле анализ тепловых полей производят в процессе их естественного возникновения. При активном нагреве производят внешним источником тепловой энергии. Контроль температурного поля осуществляют с помощью термометров, термоиндикаторов, пирометров, радиометров, инфракрасных микроскопов, тепловизоров и других средств.
Приборы неконтактного измерения температуры различают по принципу действия: яркостные, цветные, радиационные. Основные параметры радиационных пирометров, действие которых основано на зависимости излучаемой телом энергии от его температуры.
Тепловизионная аппаратура, получившая в настоящее время широкое применение в диагностике, основана на сканировании поверхности объекта лучом инфракрасного спектра, приеме, усилении и развертки отраженного луча. В технической диагностике приборы термовидения с дистанционным обследованием объекта применяют при:
- диагностике электроустановок, трансформаторов, выявления плохого электроконтакта и т. д.;
- обследовании вращающегося объекта для обнаружения локальных перегревов из-за повышения трения, отсутствия смазки, неправильной эксплуатации (метод применяют совместно со стробоскопированием объекта);
- диагностике работающего химико-технологического оборудования, доступ к поверхности которого затруднен;
- диагностике качества изоляции, футеровки;
- диагностике напряженного состояния металла.
Электрические методы
Электрические методы основаны на регистрации электростатических полей и электрических параметров контролируемого объекта. В зависимости от измеряемых параметров методы подразделяют на: электрического сопротивления, термоэлектрический, трибоэлектрический, электроемкостный. Их применяют для выявления раковин, расслоений, различных дефектов в сварных швах, трещин и расслоений в эмалевых покрытиях, а также для проверки химического состава металла, степени его термообработки, измерения толщины пленок, качества изоляции и т. д.
Вихретоковые методы
Вихретоковые методы основаны на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых возбуждающей катушкой в электропроводящем объекте. Плотность вихревых токов в объекте зависит от геометрических и электромагнитных параметров объекта, а также от взаимного расположения измерительного преобразователя и объекта. В качестве преобразователя используют индуктивные катушки. Особенность вихретокового контроля в том, что его можно проводить без контакта преобразователя с объектом. На сигналы преобразователя практически не влияет влажность, давление и загрязненность газовой среды, радиоактивные излучения, загрязненность поверхности объекта непроводящими материалами. Вихретоковые методы применяют для обнаружения дефектов в электропроводящих объектах: металлах, сплавах, графите, полупроводниках, на их поверхностях и на глубине проникновения электромагнитного поля. Метод нашел применение для контроля разнообразных трещин, расслоений, раковин, неметаллических включений в сварных и литых конструкциях.
Капиллярный метод
Капиллярный метод дефектоскопии основан на капиллярном проникновении индикаторных жидкостей в полости поверхностных и сквозных несплошностей объекта и регистрации образующихся индикаторных следов визуально или с помощью преобразователя (датчика).
Капиллярные методы применяют для обнаружения дефектов в деталях простой и сложной формы. Эти методы позволяют обнаруживать дефекты производственно-технологического и эксплуатационного происхождения: трещины шлифовочные, термические, усталостные, волосовины, закаты и др. В качестве проникающих веществ используют керосин, цветные, люминесцентные и радиоактивные жидкости, а также применяют метод избирательно фильтрующихся частиц.
Выбор методов неразрушающего контроля
Методы неразрушающего контроля не являются универсальными. Каждый из них может быть использован наиболее эффективно для обнаружения определенных дефектов. Выбор метода неразрушающего контроля определяется конкретными требованиями практики и зависит от материала, конструкции исследуемого объекта, состояния его поверхности, характеристики дефектов, подлежащих обнаружению, условий работы объекта, условий контроля и технико-экономических показателей.
Материалы деталей оборудования химических и других потенциально опасных производств различаются составом, степенью деформации, микро- и макроструктурой, термической обработкой, плотностью и другими свойствами. Наличие в них дефектов вызывает локальное изменение свойств, которое может быть обнаружено с помощью различных методов. Поэтому при экспертизе применяют комплексный подход к выявлению дефектов, т. е. используют одновременно несколько методов.
Поверхностные и подповерхностные дефекты в ферромагнитных сталях обнаруживают намагничиванием детали и фиксацией при этом поля рассеивания с помощью магнитных методов. Те же дефекты в изделиях, изготовленных из немагнитных сплавов, например, жаропрочных, нержавеющих, нельзя выявить магнитными методами. В этом случае применяют, например, электромагнитный метод. Однако и этот метод непригоден для изделий из пластмасс. В этом случае оказывается эффективным капиллярный метод. Ультразвуковой метод малоэффективен при выявлении внутренних дефектов в литых конструкциях и сплавах с высокой степенью анизотропии. Такие конструкции контролируют с помощью рентгеновских или гамма лучей.
Конструкция (форма и размеры) деталей также обусловливает выбор метода контроля. Если для контроля объекта простой формы можно применить почти все методы, то для контроля объектов сложной формы применение методов ограничено. Объекты, имеющие большое количество выточек, канавок, уступов, геометрических переходов, трудно контролировать такими методами, как магнитный, ультразвуковой, радиационный. Крупногабаритные объекты контролируют по частям, определяя зоны наиболее опасных участков.
Состояние поверхности изделия, под которым подразумевают ее шероховатость и наличие на ней защитных покрытий и загрязнений существенно влияет на выбор метода и подготовку поверхности к исследованиям. Грубая шероховатая поверхность исключает применение капиллярных методов, метода вихревых токов, магнитных и ультразвуковых методов в контактном варианте. Малая шероховатость расширяет возможности методов дефектоскопии. Ультразвуковой и капиллярный методы применяют при шероховатости поверхности по 5-му и более высокому классу; магнитный и вихретоковый не менее 3-го класса. Защитные покрытия не позволяют применять оптические, магнитные и капиллярные методы. Эти методы можно применять только после удаления покрытия. Если такое удаление невозможно, применяют радиационные и ультразвуковые методы. Электромагнитным методом обнаруживают трещины на деталях, имеющих лакокрасочные и другие неметаллические покрытия толщиной до 0,5 мм и неметаллические немагнитные покрытия до 0,2 мм.