Смекни!
smekni.com

Методические указания о проведении экспертизы промышленной безопасности разработаны по заданию ао «рд «КазМунайГаз» (стр. 8 из 14)

Дефекты имеют различное происхождение и отличаются по виду, размерам, месту расположения, ориентации относительно волокна металла. При выборе метода контроля следует изучить технологию объекта, характер возможных дефектов и определить условия на от­браковку объекта или его предельного состояния. По расположению дефекты могут быть внутренними, залегающими на глубине более 1 мм, подповерхностными (на глубине до 1 мм) и поверхностными. Для обнаружения внутренних дефектов в стальных изделиях используют чаще радиационный и ультразвуковые методы. Если изделия имеют сравнительно небольшую толщину, а дефекты, подлежащие выявле­нию, достаточно большие размеры, то лучше пользоваться радиаци­онными методами. Если толщина изделия в направлении просвечи­вания больше 100-150 мм или требуется обнаружить в нем внутрен­ние дефекты в виде трещин или тонких расслоений, то применять радиационные методы нецелесообразно, так как лучи не проникают на такую глубину и их направление перпендикулярно направлению трещин. В таком случае наиболее приемлем ультразвуковой контроль. Поверхностные дефекты обнаружить проще, однако и в этом случае выбор метода зависит от того, где находится трещина (на гладкой поверхности или в месте геометрического перехода).

Условия работы объекта. Контроль объекта может производиться в рабочем режиме оборудования, режиме тестовых испытаний, в нерабочем режиме. В последнем случае контроль изделия проводят в разобранном поэлементно или в собранном виде. Отдельные съемные элементы могут быть подвергнуты контролю в лабораторных условиях. При ремонте изделия контролю подлежат все детали. При этом выявляют характерные виды их повреждения, износа, дефектов. Дефектация элементов конструкции при ремонтно-восстановительных работах и отказах служат основанием для определения их предельных параметров технического состояния. В условиях эксплуата­ции контролю может быть подвержено ограниченное число элементов, деталей, участков и точек, представляющих наибольшую опас­ность эксплуатации объекта. При этом в первую очередь стремятся выявить наличие усталостных трещин, коррозионного поражения, участков износа. Для контроля в труднодоступных местах применяют датчики и преобразователи специальной формы, смонтированные в оправках, а также различные приспособления, фиксаторы, устройства, позволяющие манипулировать датчиком на расстоянии, осветители, зеркала и т. д. Для контроля внутренних поверхностей применяют эндоскопы.

При выборе метода контроля следует провести технико-экономический анализ диагностических работ, учитывающий их качество, трудоемкость, стоимость. Характеристики методов диагностирования оборудования различными методами даны в таблице 1

Рекомендации по выбору методов неразрушающего контроля в зависимости от различных факторов даны в таблицах 1 - 4.

Рекомендации по выбору конкретных марок отечественных и за­рубежных приборов неразрушающего контроля даны в многочислен­ной справочной литературе. Методические указания по экспертизе различных видов оборудования, как правило, не регламентируют марку измерительного прибора, ограничиваясь лишь требованиями к точности. Однако в ряде производств, с целью обеспечения повышенной точности и повторяемости результатов измере­ний даются указания по контролю конкретными диагностическими средствами по конкретным методикам.

Дефекты сварных швов и методы их обнаружения и контроля

Сварным швам присущи типовые металлургические дефекты: ра­ковины, газовые поры, шлаковые включения и др., а также дефекты неправильной технологии сварки и термообработки: непровар, изме­нение размеров зерен, горячие и холодные трещины, ликвации.

Требования к сварке и последующей термической обработке раз­нообразны, зависят от свойств свариваемых материалов, назначе­ния, конструкции и условий эксплуатации объектов и регламентиру­ются стандартами, правилами устройства и эксплуатации изделий, техническими условиями на изготовление, производственными инст­рукциями и технологической документацией. Контроль сварных швов производят:

- в процессе изготовления изделия,

- при приемно-сдаточных испытаниях,

- при эксплуатации изделия в соответствии с Правилами эксп­луатации.

Последовательность и объем контроля должен соответствовать требованиям нормативно-технической документации на изделие. Результаты контроля фиксируются в паспорте изделия и в эксплуата­ционной документации.

Контроль проводят неразрушающими или разрушающими мето­дами. Основными видами неразрушающего контроля сварных соеди­нений являются:

- визуальный и измерительный,

- радиографический,

- ультразвуковой (УЗД),

- радиоскопический,

- стилоскопирование,

- измерение твердости,

- гидравлические (или пневматические) испытания.

Кроме этого могут применяться другие методы (акустическая эмис­сия, магнитография, цветная дефектоскопия и др.) в соответствии с нормативно-технической документацией на изделие.

Целью визуального контроля является выявление трещин всех видов и направлений, свищей и пористости наружной поверхности шва, подрезов, наплывов, прижогов, незапланированных кратеров, смещения и совместного увода кромок свариваемых элементов, непрямолинейности соединяемых элементов, несоответствия формы и размеров швов требованиям технической документации.

УЗД и радиографический контроль проводят с целью выявления внутренних дефектов. Метод контроля выбирают из условия более точного и полного выявления недопустимых дефектов с учетом физических свойств металла и конструкции изделия.

УЗД сварных соединений проводят, как правило, эхо-методом. Так как в стыковых швах дефекты чаще всего ориентированы параллельно поверхностям свариваемых кромок, то прозвучивание осуществляют поперечно продольным сканировани­ем.

Цветной и магнитопорошковой дефектоскопии подвергают сварные швы, не доступные для контроля радиографическим или ультразвуковым методам, а также сварные швы сталей склонных к образованию трещин при сварке.

Контроль стилоскопированием проводят с целью подтверждения соответствия марки металла деталей и сварного шва требованиям нормативно-технической документации. При стилоскопировании руководствуются Инструкцией по стилоскопированию основных и сва­рочных материалов. Дефектные сварные швы, выявленные при конт­роле, должны быть удалены, швы вновь сварены и подвергнуты сти­лоскопированию.

Сварные соединения подвергают испытаниям на сопротивляемость образованию холодных и горячих трещин металла швов и зоны сплавления сварных соединений при всех способах сварки плавлением и имитации сварочного термического цикла. Сущность методов состоит в высокотемпературной деформации металла в процессе сварки до образования трещин под действием внешних сил, создаваемых испытательной машиной (машинные методы), или под действием внутренних сил от усадки шва и формоизменения свариваемых элементов (технологические методы). Форму образцов и схему деформирования выбирают в зависимости от толщины основного металла, способа сварки, объекта испытания и ориентации трещин, которые необходимо воспроизвести при испытаниях. Металлографическому исследованию подвергают стыковые сварные соединения, определяющие прочность сосудов:

- работающих под давлением более 5 МПа (50 кгс/см2) или темпе­ратуре выше 450°С, или температуре ниже минус 40°С,

- изготовленных из легированных сталей, склонных к подкалке при сварке (12ХМ, 15Х5М и др.), из сталей аустенитного класса без ферритной фазы (06ХН28МДТ, 08Х17Н16МЗТ и др.) и из двухслойных сталей.

Испытание сварного соединения на сопротивление межкристаллитной коррозии проводится для изделий, изготовленных из сталей аустенитного, ферритного, аустенитно-ферритного классов и двухслойной стали с коррозионным слоем из указанных сталей. Необходимость испытаний на стойкость против межкристаллитной коррозии сварных соединений указывается в проекте или другой нормативно-технической документации.

Вибрационная диагностика

Под вибрационной диагностикой понимают диагностику, основан­ную на анализе вибрации объекта диагностирования. Вибрационная диагностика применяется при техническом аудите трубопроводов и объемного оборудования, колебания которых возбуждаются пульса­циями потока технологической среды, и машинного оборудования, колебания которого возбуждаются движением его элементов.

Движущиеся части машинного оборудования создают в нем коле­бания, анализ которых позволяет получить информацию о его техни­ческом состоянии.

Существуют несколько причин, вызывающих колебания механизма:

- Неуравновешенность движущихся деталей. Эти колебания ха­рактеризуются низкими частотами, сравнительно большими амплитудами перемещения и малыми ускорениями. Основная часть вибрации механизма равна числу оборотов вала, на котором имеются несбалансированные массы. Наблюдаются также гармоники, кратные основной частоте.

- Соударение деталей механизма из-за зазоров в кинематичес­ких парах. Колебания отличаются высокими частотами (тысяча герц), малыми амплитудами и значительными ускорения­ми. Частоты не зависят от скоростного режима механизма, а определяются в основном размерами, формой и упругими константами материалов деталей.