Смекни!
smekni.com

Изучение температурной зависимости сопротивления полупроводника Методические указания к лабораторной работе по физике для студентов строительных специальностей Минск 2007 удк 537. 311. 322 (076. 5) Бб (стр. 1 из 4)

Министерство образования республики Беларусь

Белорусский национальный технический

университет

Кафедра физики

Изучение температурной зависимости сопротивления полупроводника

Методические указания к лабораторной работе по физике

для студентов строительных специальностей

Минск 2007


УДК 537.311.322 (076.5)

ББК 22.3я7

И 39

Составители: В.С. Позняк, В.В. Павлюченко

Рецензенты: А.А. Баранов, Е.А. Шашков

Рассмотрены вопросы зонной теории твердых тел, электрической проводимости собственных и примесных полупроводников. Изложен метод определения температурной зависимости сопротивления полупроводника и температурного коэффициента. Даны понятия энергии и уровня Ферми.

© Позняк В.С., Павлюченко В.В.

составление, 2007

© БНТУ, 2007

Лабораторная работа

Изучение температурной зависимости

сопротивления полупроводника.

Цель работы: 1. Ознакомиться с зонной теорией твердых тел, с электропроводностью собственного и примесного полупроводников.

2. Изучить температурную зависимость сопротивления полупроводника и определить температурный коэффициент сопротивления изучаемого полупроводника при комнатной температуре и при 100°С.

Приборы и принадлежности: исследуемый полупроводник, нагреватель с воздушной баней, термометр, универсальный цифровой прибор – мультиметр ВР-11.

1. Понятие о зонной теории твердых тел.

В классической теории металлов считается, что электроны проводимости могут обладать любыми значениями энергии. Согласно квантовой теории энергия электронов в любом кристаллическом теле, как и энергия электронов в атоме, квантуется, т.е. она может принимать лишь дискретные (разделенные определенными промежутками) значения, соответствующие так называемым энергетическим уровням. Дозволенные уровни энергии в кристалле группируются в зоны.

В изолированном атоме каждый электрон обладает одним из разрешенных значений энергии, т.е. занимает один из дозволенных энергетических уровней. Кроме этого электроны подчиняются принципу запрета Паули, который гласит, что в любой квантовой системе (атоме, молекуле, кристалле и т.д.) на каждом энергетическом уровне может находиться не более двух электронов, причем собственные моменты (спины) электронов, занимающих одновременно один и тот же уровень, должны иметь противоположные направления. На рис. 1 схематически показано размещение электронов по уровням в основном состоянии атома, имеющего пять электронов. Стрелки указывают направления спинов.

Чтобы понять происхождение зон, рассмотрим воображаемый процесс объединения атомов в кристалл. Пока атомы изолированы друг от друга, они имеют полностью совпадающие схемы энергетических уровней. Заполнение уровней электронами осуществляется в каждом атоме независимо от заполнения аналогичных уровней в других атомах.

По мере сближения атомов в процессе образования кристаллической решетки между ними возникает все усиливающееся взаимодействие, которое приводит к изменению положения уровней. Вместо одного одинакового для всех N атомов уровня возникает N очень близких, но не совпадающих уровней. Таким образом, каждый уровень изолированного атома расщепляется в кристалле на N густо расположенных уровней, образующих полосу или зону. N – порядка числа Авогадро N А = 6,02×1023 моль–1.

На рис. 2 показано расщепление уровней энергии изолированных атомов при их сближении как функция расстояния r между атомами и образование энергетических зон твердого тела.

Отмеченные на рисунке значения r1 и r2 соответствуют расстояниям между атомами в двух различных кристаллах. Из схемы видно, что возникающее в кристалле расщепление уровней, занятых внутренними электронами, очень мало. Заметно расщепляются лишь уровни, занимаемые валентными электронами. Такому же расщеплению подвергаются и более высокие уровни, не занятые электронами в основном состоянии атома. При достаточно малых расстояниях между атомами может произойти перекрывание зон, соответствующих двум соседним уровням атома (см. пунктирную прямую, соответствующую расстоянию r2 между атомами). Число уровней в такой слившейся зоне равно сумме количеств уровней, на которые расщепляются оба уровня атома.

На основании расщепления уровней можно сказать, что внутренние электроны атомов твердого тела ведут себя практически так же, как и в изолированных атомах, а внешние (валентные) электроны коллективизированы: они принадлежат всему твердому телу, а не отдельным атомам. Энергия валентных электронов может находиться только в пределах заштрихованных областей, называемых разрешенными энергетическими зонами. Эти зоны разделяются промежутками, называемыми запрещенными зонами.

К зонной теории приводит в принципе решение основного уравнения динамики в нерелятивистской квантовой механике – уравнение Шредингера, описывающего поведение квантомеханической системы кристалла. Но поскольку как в классической, так и в квантовой механике отсутствуют методы точного решения динамической задачи для системы многих частиц, то эта задача решается приближенно сведением задачи многих частиц к одноэлектронной задаче об одном электроне, движущимся в заданном внешнем поле.

2. Металлы, диэлектрики и полупроводники по зонной теории.

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон.

Наибольший интерес с точки зрения электропроводности твердых тел представляют валентные электроны и соответствующие для них разрешенные зоны.

Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. Если при этом какой-то энергетический уровень полностью заполнен, то образующаяся энергетическая зона также заполнена целиком.

Валентные электроны заполняют попарно уровни разрешенной зоны, возникшей из того уровня, на котором находятся валентные электроны в основном состоянии атома. Эта полностью заполненная зона (бывает частично заполненная) называется валентной. Более высокие разрешенные зоны будут от электронов свободны. Свободная зона, являющаяся соседней по отношению к валентной зоне, называется зоной проводимости.

Если валентная зона не полностью занята электронами или валентная зона частично перекрывается с зоной проводимости, то такие твердые тела являются металлами (рис. 3)

Рис. 3

Частичное заполнение валентной зоны (в случае металла ее называют зоной проводимости) может произойти, если на последнем занятом уровне в атоме находится только один электрон.

Если полностью заполненная валентная зона отделена запрещенной зоной от зоны проводимости, то твердое тело является диэлектриком (изолятором) или полупроводником. Различие лишь в том, что ширина запрещенной зоны у диэлектриков значительно больше ширины этой зоны у полупроводников (рис. 4).

Электроны в кристаллах могут переходить из одной разрешенной зоны в другую, а также совершать переходы внутри одной и той же зоны. Для перехода из валентной зоны в зону проводимости нужно затратить энергию, равную ширине запрещенной зоны DW (DW ~ нескольких электронвольт). Для перехода внутри разрешенной зоны требуется весьма малая энергия.

У диэлектриков запрещенная зона порядка 6 эВ. Следовательно, внешнее электрическое поле не может перевести электроны из целиком заполненной валентной зоны в зону проводимости, т.е. заставить двигаться электроны в определенном направлении и создать электрический ток.

В металлах же, вследствие малости энергетического расстояния между соседними уровнями (~ 10-23 эВ), под действием даже малого внешнего электрического поля электроны способны переходить на соседние свободные уровни, образуя электрический ток.

3. Собственная проводимость полупроводников и температурная зависимость сопротивления полупроводников.

По величине электрической проводимости полупроводники занимают промежуточное положение между металлами и изоляторами. Однако характерным для них является не величина проводимости, а то, что их проводимость растет с повышением температуры (у металлов она уменьшается). Типичными представителями полупроводников являются германий, кремний, теллур, селен и др. Полупроводниками являются также оксиды, сернистые соединения (сульфиды), соединения металлов с селеном (селениды). Ширина запрещенной зоны у чистых полупроводниковых материалов около 1 эВ.

Проводимость чистых полупроводников (собственная проводимость) возникает в результате перехода электронов с верхних уровней валентной зоны в зону проводимости (рис. 5). При этом в зоне проводимости появляется некоторое число носителей тока – электронов, занимающих уровни вблизи дна зоны; одновременно в валентной зоне освобождается такое же число мест на верхних уровнях. Такие свободные от электронов места на уровнях заполненной при абсолютном нуле валентной зоны называются дырками. На освободившееся от электрона место – дырку – может переместиться электрон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон, и т.д. Такой процесс заполнения дырок электронами равносилен перемещению дырки в направлении, противоположном движению электрона, так, как если бы дырка обладала положительным зарядом, равным по величине заряду электрона. В отсутствие внешнего электрического поля электроны проводимости и дырки движутся хаотически. Важно заметить, что дырка – квазичастица, она не может в отличие от электрона существовать в вакууме.