Смекни!
smekni.com

Методические указания для студентов Москва 2005 удк 681. 3 (стр. 2 из 8)

Динамические СППР, напротив, ориентированы на обработку нерегламентированных (ad hoc) запросов аналитиков к данным. Наиболее глубоко требования к таким системам рассмотрел E. F. Codd в работе [1], положившей начало концепции OLAP. Работа аналитиков с этими системами заключается в интерактивной последовательности формирования запросов и изучения их результатов. Но динамические СППР могут действовать не только в области оперативной аналитической обработки (OLAP); поддержка принятия управленческих решений на основе накопленных данных может выполняться в трех базовых сферах:

1) Сфера детализированных данных. Это область действия большинства систем, нацеленных на поиск информации. В большинстве случаев реляционные СУБД отлично справляются с возникающими здесь задачами. Общепризнанным стандартом языка манипулирования реляционными данными является SQL. Информационно-поисковые системы, обеспечивающие интерфейс конечного пользователя в задачах поиска детализированной информации, могут использоваться в качестве надстроек как над отдельными базами данных, так и над общим хранилищем данных.

2) Сфера агрегированных показателей. Комплексный взгляд на собранную в хранилище данных информацию, ее обобщение и агрегация, гиперкубическое представление и многомерный анализ являются задачами систем оперативной аналитической обработки данных (OLAP). Здесь можно или ориентироваться на специальные многомерные СУБД, или оставаться в рамках реляционных технологий. Во втором случае заранее агрегированные данные могут собираться в БД звездообразного вида, либо агрегация информации может производиться на лету в процессе сканирования детализированных таблиц реляционной БД.

3) Сфера закономерностей. Интеллектуальная обработка производится методами интеллектуального анализа данных (ИАД, Data Mining), главными задачами которых являются поиск функциональных и логических закономерностей в накопленной информации, построение моделей и правил, которые объясняют найденные аномалии и/или прогнозируют развитие некоторых процессов.

Полная структура информационно-аналитической системы, построенной на основе хранилища данных, показана на рис. 2. В конкретных реализациях отдельные компоненты этой схемы часто отсутствуют.

Рис. 2. Полная структура корпоративной информационно-

аналитической системы (ИАС)

2. Основы Оперативной аналитической обработки данных OLAP

В основе концепции OLAP лежит принцип многомерного представления данных. Понятие о многомерных пространствах - эвклидовых и неэвклидовых - появилось в математике в XVIII-XIX веках, великий русский ученый В.И.Вернадский первым предложил их использование для анализа природных явлений: "Земное пространство всегда есть физико-химическое пространство. Очевидно, оно многообразно. Многообразие это может выясняться только научным наблюдением, и возможно, что мы можем выйти здесь за пределы эвклидовой геометрии, ибо все геометрии одинаково правильны и какие из них проявляются в окружающей нас среде, мы не знаем". В экономико-математическом моделировании предприятие можно описать вектором в многомерном пространстве с компонентами: затраты на рабочих, затраты на станки, затраты на патенты, деньги на счету и т.д. План предприятия - алгоритм преобразования этого вектора, в простейшем случае - матрица, на которую умножают вектор. Набор последовательных значений вектора, характеризующего предприятие, образует траекторию его развития (конечно, завод стоит на месте, меняются его параметры). Отличие предприятия от другого или от идеала можно охарактеризовать расстоянием между концами соответствующих векторов, вычисляемым по теореме Пифагора, но в многомерном пространстве. Обобщенную характеристику предприятия - стоимость его акций - можно оценить с использованием процедуры свертки, например, как объем многомерного параллелепипеда, в котором вектор является диагональю. При этом обнуление одного из компонент вектора, например, отсутствие оборотных средств, обесценивает предприятие в целом.

Многомерные пространства используются при решении задач математического, в частности линейного программирования с целью оптимизации планов, при решении эконометрических задач с целью изучения и прогнозирования рынков, в последние годы - для прогнозирования природных и социальных катастроф.

В 1993 году в работе [1] Е.Ф.Кодд рассмотрел недостатки реляционной модели, в первую очередь указав на невозможность "объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом", и определил 12 общих требований к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик. Позже его определение было переработано в так называемый тест FASMI, требующий, чтобы OLAP-приложение предоставляло возможности быстрого анализа разделяемой многомерной информации: I

Fast (Быстрый) –анализ должен производиться одинаково быстро по всем аспектам информации. Приемлемое время отклика - 5 с или менее.

Analysis (Анализ) – должна быть возможность осуществлять основные типы числового и статистического анализа, предопределенного разработчиком приложения или произвольно определяемого пользователем.

Shared (Разделяемой) – множество пользователей должно иметь доступ к данным, при этом необходимо контролировать доступ к конфиденциальной информации.

Multidimensional (Многомерной) – это основная, наиболее существенная характеристика OLAP.

Information (Информации) – приложение должно иметь возможность обращаться к любой нужной информации, независимо от ее объема и места хранения.

По Кодду, многомерное концептуальное представление (multi-dimensional conceptual view) представляет собой множественную перспективу, состоящую из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных. Одновременный анализ по нескольким измерениям определяется как многомерный анализ. Каждое измерение включает направления консолидации данных, состоящие из серии последовательных уровней обобщения, где каждый вышестоящий уровень соответствует большей степени агрегации данных по соответствующему измерению. Так, измерение Исполнитель может определяться направлением консолидации, состоящим из уровней обобщения "предприятие – подразделение – отдел – служащий". Измерение Время может даже включать два направления консолидации – "год – квартал – месяц – день" и "неделя – день", поскольку счет времени по месяцам и по неделям несовместим. В этом случае становится возможным произвольный выбор желаемого уровня детализации информации по каждому из измерений. Операция спуска (drilling down) соответствует движению от высших ступеней консолидации к низшим; напротив, операция подъема (rolling up) означает движение от низших уровней к высшим (рис. 3).

Рис. 3. Измерения и направления консолидации данных

3. Классификация продуктов OLAP по способу представления данных

В настоящее время на рынке присутствует большое количество продуктов, которые в той или иной степени обеспечивают функциональность OLAP. Около 30 наиболее известных перечислены в списке обзорного Web-сервера http://www.olapreport.com/. Обеспечивая многомерное концептуальное представление со стороны пользовательского интерфейса к исходной базе данных, все продукты OLAP делятся на три класса по типу исходной БД.

Первые системы оперативной аналитической обработки (например, Essbase компании Arbor Software, Oracle Express Server компании Oracle) относились к классу MOLAP, то есть могли работать только со своими собственными многомерными базами данных. Они основываются на патентованных технологиях для многомерных СУБД и являются наиболее дорогими. Эти системы обеспечивают полный цикл OLAP-обработки. Они либо включают в себя, помимо серверного компонента, собственный интегрированный клиентский интерфейс, либо используют для связи с пользователем внешние программы работы с электронными таблицами. Для обслуживания таких систем требуется специальный штат сотрудников, занимающихся установкой, сопровождением системы, формированием представлений данных для конечных пользователей.

Системы оперативной аналитической обработки реляционных данных (ROLAP) позволяют представлять данные, хранимые в реляционной базе, в многомерной форме, обеспечивая преобразование информации в многомерную модель через промежуточный слой метаданных (описаний данных). К этому классу относятся DSS Suite компании MicroStrategy, MetaCube компании Informix, DecisionSuite компании Information Advantage и другие. Программный комплекс ИнфоВизор, разработанный в России, в Ивановском государственном энергетическом университете, также является системой этого класса. ROLAP-системы хорошо приспособлены для работы с крупными хранилищами. Подобно системам MOLAP, они требуют значительных затрат на обслуживание специалистами по информационным технологиям и предусматривают многопользовательский режим работы.