Гибридные системы (Hybrid OLAP, HOLAP) разработаны с целью совмещения достоинств и минимизации недостатков, присущих предыдущим классам. К этому классу относится Media/MR компании Speedware. По утверждению разработчиков, он объединяет аналитическую гибкость и скорость ответа MOLAP с постоянным доступом к реальным данным, свойственным ROLAP.
Помимо перечисленных средств существует еще один класс – инструменты генерации запросов и отчетов для настольных ПК, дополненные функциями OLAP или интегрированные с внешними средствами, выполняющими такие функции. Эти хорошо развитые системы осуществляют выборку данных из исходных источников, преобразуют их и помещают в динамическую многомерную БД, функционирующую на клиентской станции конечного пользователя. Основными представителями этого класса являются BusinessObjects одноименной компании, BrioQuery компании Brio Technology и PowerPlay компании Cognos.
Далее эти системы рассмотрены более подробно.
Многомерный OLAP (MOLAP).
В специализированных СУБД, основанных на многомерном представлении данных, данные организованы не в форме реляционных таблиц, а в виде упорядоченных многомерных массивов:
1) гиперкубов (все хранимые в БД ячейки должны иметь одинаковую мерность, то есть находиться в максимально полном базисе измерений) или
2) поликубов (каждая переменная хранится с собственным набором измерений, и все связанные с этим сложности обработки перекладываются на внутренние механизмы системы).
Использование многомерных БД в системах оперативной аналитической обработки имеет следующие достоинства:
· В случае использования многомерных СУБД поиск и выборка данных осуществляется значительно быстрее, чем при многомерном концептуальном взгляде на реляционную базу данных, так как многомерная база данных денормализована, содержит заранее агрегированные показатели и обеспечивает оптимизированный доступ к запрашиваемым ячейкам.
· Многомерные СУБД легко справляются с задачами включения в информационную модель разнообразных встроенных функций, тогда как объективно существующие ограничения языка SQL (Структурированный Язык Запросов) делают выполнение этих задач на основе реляционных СУБД достаточно сложным, а иногда и невозможным.
С другой стороны, имеются существенные ограничения:
· Многомерные СУБД не позволяют работать с большими базами данных. К тому же за счет денормализации и предварительно выполненной агрегации объем данных в многомерной базе, как правило, соответствует (по оценке Кодда в 2.5-100 раз меньшему объему исходных детализированных данных.
· Многомерные СУБД по сравнению с реляционными очень неэффективно используют внешнюю память. В подавляющем большинстве случаев информационный гиперкуб является сильно разреженным, а поскольку данные хранятся в упорядоченном виде, неопределенные значения удаётся удалить только за счет выбора оптимального порядка сортировки, позволяющего организовать данные в максимально большие непрерывные группы. Но даже в этом случае проблема решается только частично. Кроме того, оптимальный с точки зрения хранения разреженных данных порядок сортировки скорее всего не будет совпадать с порядком, который чаще всего используется в запросах. Поэтому в реальных системах приходится искать компромисс между быстродействием и избыточностью дискового пространства, занятого базой данных.
Следовательно, использование многомерных СУБД оправдано только при следующих условиях:
· Объем исходных данных для анализа не слишком велик (не более нескольких гигабайт), то есть уровень агрегации данных достаточно высок.
· Набор информационных измерений стабилен (поскольку любое изменение в их структуре почти всегда требует полной перестройки гиперкуба).
· Время ответа системы на нерегламентированные запросы является наиболее критичным параметром.
· Требуется широкое использование сложных встроенных функций для выполнения кроссмерных вычислений над ячейками гиперкуба, в том числе возможность написания пользовательских функций.
·
Реляционный OLAP (ROLAP).
Непосредственное использование реляционных БД в системах оперативной аналитической обработки имеет следующие достоинства:
· В большинстве случаев корпоративные хранилища данных реализуются средствами реляционных СУБД, и инструменты ROLAP позволяют производить анализ непосредственно над ними. При этом размер хранилища не является таким критичным параметром, как в случае MOLAP.
· В случае переменной размерности задачи, когда изменения в структуру измерений приходится вносить достаточно часто, ROLAP системы с динамическим представлением размерности являются оптимальным решением, так как в них такие модификации не требуют физической реорганизации БД.
· Реляционные СУБД обеспечивают значительно более высокий уровень защиты данных и хорошие возможности разграничения прав доступа.
Главный недостаток ROLAP по сравнению с многомерными СУБД – меньшая производительность. Для обеспечения производительности, сравнимой с MOLAP, реляционные системы требуют тщательной проработки схемы базы данных и настройки индексов, то есть больших усилий со стороны администраторов БД. Только при использовании звездообразных схем производительность хорошо настроенных реляционных систем может быть приближена к производительности систем на основе многомерных баз данных.
Ее идея заключается в том, что имеются таблицы для каждого измерения, а все факты помещаются в одну таблицу, индексируемую множественным ключом, составленным из ключей отдельных измерений (рис. 4). Каждый луч схемы звезды задает, в терминологии Кодда, направление консолидации данных по соответствующему измерению.
Рис. 4. Пример схемы "звезды"
В сложных задачах с многоуровневыми измерениями имеет смысл обратиться к расширениям схемы звезды – схеме созвездия (fact constellation schema) и схеме снежинки (snowflake schema). В этих случаях отдельные таблицы фактов создаются для возможных сочетаний уровней обобщения различных измерений. Это позволяет добиться лучшей производительности, но часто приводит к избыточности данных и к значительным усложнениям в структуре базы данных, в которой оказывается огромное количество таблиц фактов.
Ориентация на представление многомерной информации с помощью звездообразных реляционных моделей позволяет избавиться от проблемы оптимизации хранения разреженных матриц, остро стоящей перед многомерными СУБД (где проблема разреженности решается специальным выбором схемы). Хотя для хранения каждой ячейки используется целая запись, которая помимо самих значений включает вторичные ключи - ссылки на таблицы измерений, несуществующие значения просто не включаются в таблицу фактов.
4. Основные понятия многомерной модели данных
Пользователь получает естественную, интуитивно понятную модель данных, организуя их в виде многомерных кубов (Cubes). Осями многомерной системы координат служат основные атрибуты анализируемого бизнес-процесса. Например, для продаж это могут быть товар, регион, тип покупателя. В качестве одного из измерений используется время. На пересечениях осей – измерений (Dimensions) – находятся данные, количественно характеризующие процесс – меры (Measures). Это могут быть объемы продаж в штуках или в денежном выражении, остатки на складе, издержки и т. п. Пользователь, анализирующий информацию, может "разрезать" куб по разным направлениям, получать сводные (например, по годам) или, наоборот, детальные (по неделям) сведения и осуществлять прочие манипуляции, которые ему придут в голову в процессе анализа.
Основными понятиями многомерной модели данных являются:
Показатель (факт, measure) – это величина (обычно числового типа), которая собственно и является предметом анализа. Это, например, объём продаж некоторого товара, или выручка от продаж товара. Один OLAP-куб может обладать одним или несколькими показателями.
Измерение (dimension) – это множество объектов одного или нескольких типов, организованных в виде иерархической структуры и обеспечивающих информационный контекст числового показателя. Измерение принято визуализировать в виде ребра многомерного куба.
Объекты, совокупность которых и образует измерение, называются членами измерений (members). Члены измерений визуализируют как точки или участи, откладываемые на осях гиперкуба. Например, временное измерение: Дни, Месяцы, Кварталы, Годы – наиболее часто используемые в анализе, могут содержать следующие члены: 8 мая 2002 года, май 2002 года,
2-ой квартал 2002 года и 2002 год.
Объекты в измерениях могут быть различного типа, например “производители” – “марки автомобиля” или “годы” – “кварталы”. Эти объекты должны быть организованы в иерархическую структуру так, чтобы объекты одного типа принадлежали только одному уровню иерархии.
Ячейка (cell) – атомарная структура куба, соответствующая конкретному значению некоторого показателя. Ячейки при визуализации располагаются внутри куба и здесь же принято отображать соответствующее значение показателя.
Измерения играют роль индексов, используемых для идентификации значений показателей, находящихся в ячейках гиперкуба. Комбинация членов различных измерений играют роль координат, которые определяют значение определенного показателя (рис.5). Поскольку для куба может быть определено несколько показателей, то комбинация членов всех измерений будет определять несколько ячеек со значениями каждого из показателей. Поэтому для однозначной идентификации ячейки необходимо указать комбинацию членов всех измерений и показатель.