На полевых транзисторах выполняются цифровые устройства, практически не потребляющие энергии в статическом состоянии, то есть схемы с малым потреблением.
На полевых транзисторах, в силу их особенностей, удобно строить ключи переменного тока, в том числе и прецизионные аналоговые коммутаторы.
Мощные полевые транзисторы обладают значительно меньшим сопротивлением в открытом состоянии при работе в ключевом режиме, что обеспечивает более высокие значения КПД преобразователей энергии.
Кроме того, в полевых транзисторах отсутствует эффект диффузионной емкости и связанные с ним ограничения быстродействия, обусловленные эффектом насыщения.
К сожалению, крутизна управления у полевых транзисторов существенно меньше, чем у биполярных (особенно у маломощных приборов), то есть для переключения полевого транзистора требуются большие перепады управляющего напряжения. Это обстоятельство делает быстродействие цифровых ключей на полевых транзисторах существенно меньшим по сравнению с ключами на биполярных транзисторах.
Все это приводит специалистов к необходимости творческих решений проблемы приоритетов между полевыми и биполярными транзисторами в каждом конкретном случае.
По физике работы различают полевые транзисторы с управляемым р-п-переходом и полевые транзисторы с изолированным затвором.
В связи с особенностями обращения и монтажа ПТ с изолированным затвором в лабораторной работе использованы транзисторы с управляемым p-n-переходом и каналом n-типа.
Управление сопротивлением канала, а значит и током стока, осуществляется запирающим p-n-переход напряжением UЗИ. Когда ½UЗИ½ увеличивается, увеличивается и ширина обедненной области p-n-перехода, уменьшающей ширину проводящего канала. При этом сопротивление увеличивается, а ток стока уменьшается.
На рисунке 1 приведены ВАХ такого ПТ: слева – проходная (сток-затворная)
, справа – выходная (стоковая) . Выбрав на ВАХ транзистора рабочую точку, можно определить основные дифференциальные параметры ПТ: крутизну и дифференциальное сопротивление канала .Характерной особенностью полевых транзисторов является практически линейная характеристика выходной ВАХ при небольших значениях Uси, когда проводящий канал представляет практически линейно - управляемое сопротивление. Это свойство широко используется при построении линейных регуляторов сигнала (рисунок 2).
Использование полевого транзистора с управляющим р-n-переходом в качестве ключа - аналогового коммутатора - предусматривает меры, исключающие открывание управляющего перехода (рисунок 3). Нормальная коммутация обеспечивается при условии
½Uу½>½Uс½.
Отсекающий диод при подаче запирающего значения Uу запирается, обеспечивая нулевое значение напряжения затвор-исток.
В усилительном режиме при увеличении Uси за счет взаимодействия двух напряжений (Uзи, Uси), каждое из которых является для р-п-перехода запирающим, выходные ВАХ приобретают более горизонтальный характер, когда из-за слабой зависимости тока от напряжения прибор обладает относительно большим дифференциальным сопротивлением. Полевой транзистор в этом режиме широко используется в виде задатчика тока для запитки неизменным током различных цепей, в том числе и стабилитронов при создании высокостабильных опорных источников (рисунок 4).
3. Порядок выполнения работы
3.1. Снятие ВАХ полевого транзистора VT2
1. Убедитесь, что через разъем ДВ-9 макет № 1 подключен к источнику питания.
2. Соберите схему (рисунок 5) для снятия характеристик транзистора. Для получения сток-затворных характеристик устанавливайте два значения UСИ: 6 В и 10 В. При снятии выходных характеристик значения UЗИ равны 0, -0.5, -1.0, -1.5, -2.0, -2.5 В. Для получения UЗИ = 0 В перемычку (2, 19) переместить на гнезда (19, 33). Чтобы получить UЗИ = -1.5 В, -2.0 В, -2.5 В необходимо перемычку (2, 19) переместить на гнезда (2, 1), (72, 19). Для каждого значения UЗИ напряжения UСИ = 0 получать перемещением правого вывода миллиамперметра М-832 из гнезда 73 в гнездо 68. Результаты эксперимента свести в таблицы 1 и 2. По результатам эксперимента определите напряжение отсечки U0.
Рисунок 5
Таблица 1
UЗИ, В | 0 | -0.5 | -1.0 | -1.5 | -2.0 | -2.5 | Примечание |
IС, мА | UСИ = + 6 В | ||||||
IС, мА | UСИ = + 10 В |
Таблица 2
UСИ, В | 0 | 1,3 | 2,0 | 4,0 | 6,0 | 8,0 | 10,0 | 12,0 | 14,0 | Примечание |
IС, мА | UЗИ = 0 В | |||||||||
IС, мА | UЗИ = - 0,5 В | |||||||||
IС, мА | UЗИ = - 1,0 В | |||||||||
IС, мА | UЗИ = - 1,5 В | |||||||||
IС, мА | UЗИ = - 2,0 В | |||||||||
IС, мА | UЗИ = - 2,5 В |
2. Для выбранной Вами рабочей точки с координатами IС А, UСИ А, UЗИ А определите дифференциальные параметры ПТ - статическую крутизну S и внутреннее сопротивление (сопротивление канала) Ri.
3.2. Исследование ПТ как генератора тока
1. Соберите схему эксперимента (рисунок 6) и установите ручку потенциометра R15 в крайнее левое положение. Изменяя Е1, получите зависимость I = f (U). Данные занесите в таблицу 3.
Рисунок 6
Таблица 3
U, В | 14 | 12 | 10 | 8 | 6 | 4 | 2 |
I, мА |
По данным таблицы 3 постройте график, подтверждающий признаки генератора тока: малые изменения тока при относительно больших изменениях напряжения.
2. Для рабочей точки U = 10 В определите и сравните значения статического и дифференциального сопротивлений. Рассчитайте эти сопротивления в точках U = 14; 12; 8; 6; 4 В и сделайте выводы. Постройте зависимость Rд = f(U) и определите диапазон наиболее рационального использования схемы как генератора тока.
3.2. Исследование ПТ в режиме электрически
управляемого сопротивления
1. Соберите схему эксперимента (рисунок 7, в цепи затвора ПТ – вольтметр постоянного тока, в цепи стока – милливольтметр переменного тока).
Рисунок 7
2. Установите по вольтметру генератора Г3-36 напряжение UВХ = 0.5 В (выход 0, 1) и частоту f = 1 кГц. Изменяя Е1, снимите зависимость U~ = f (U=). Данные занесите в таблицу 4.
Таблица 4
U=, В | 0,15 | 0,30 | 0,45 | 0,60 | 0,75 | 0,90 | 1,05 | 1,2 | 1,35 |
U~, В | |||||||||
К = U~ / UВХ | |||||||||
RП, кОм |
В таблицу внесите также данные расчета коэффициента передачи делителя переменного напряжения, состоящего из сопротивления R5 и сопротивление канала ПТ RП. На основе расчетов постройте зависимости
RП = f (U=) и К = f (U=).
2. В схеме (рисунок 7) вместо вольтметра В3-38 подключите осциллограф. Входное напряжение пронаблюдайте с гнезда 17, выходное (с делителя) – с 23. Изменяя Е1, пронаблюдайте изменение U~ и его формы.
3. Переместите выход генератора с гнезда 0,1 в гнездо 1 и, изменяя его напряжение, пронаблюдайте форму выходного напряжения U~. Сделайте выводы.
3.4. Исследование ПТ в ключевом режиме
1. Смените макет № 1 на макет № 2. Соберите схему эксперимента (рисунок 8), где схема на VT3 выполняет функцию ключа, подключающую или отключающую нагрузку R19 от источника сигнала – генератора Г3-36. Установите на генераторе f = 1 кГц и напряжение 1 В (по вольтметру, встроенному в генератор).