Лабораторная работа № 9. ОПИСАНИЕ
Тепловое движение (1)
Вид рабочего окна приведен на Рис. 6.1. В левой части рабочего окна приведена модель теплового движения частиц в объеме, который разделен на две части перегородкой. При помощи мыши перегородку можно переместить влево (нажав левую кнопку мыши на ее верхней части) или удалить ( щелкнув на нижней части).
В правой части рабочего окна приведены: температура (в правой и левой части, моделируемого объема), мгновенные скорости частиц, а также регистрируется число столкновений частиц со стенками в процессе наблюдения. Кнопкой Пуск запускается движение частиц, при этом начальные скорости и расположение частиц задаются случайным образом. В окошке рядом с кнопкой Пуск задается число частиц. Кнопка Стоп останавливает движение. При нажатии на кнопку Продолжить движение возобновляется, и очищаются окна регистрации числа столкновений со стенками. При помощи кнопки Нагрев можно увеличивать температуру в правой части моделируемого объема. Кнопка Выкл. отключает нагрев. Переключателем справа от кнопок управления можно задать несколько разных режимов работы.
Для открытия рабочего окна нажмите на его изображение.
Лабораторная работа № 9. Теория
Тепловое движение.
ЦЕЛЬ РАБОТЫ: Дать представление студентам об особенностях теплового движения. Используя модель идеального газа, наглядно продемонстрировать, статистический смысл таких понятий как - температура, давление и внутренняя энергия.
Классическая термодинамика.
Термодинамика – наука о наиболее общих свойствах макроскопических систем, находящихся в состоянии равновесия и процессах перехода между этими состояниями. Она основана на фундаментальных принципах - началах, которые включили в себя огромный опыт человечества по превращению энергии и выполняются независимо от природы образующих систему тел. Поэтому ее закономерности - универсальны. Законы термодинамики позволяют получить много сведений о свойствах макросистем в разных условиях, не прибегая ни к какой модели их внутреннего строения. Это могут быть молекулярные системы, изучаемые в физике, электродинамике, химии, биологии и др.
Основные понятия, представления и закономерности термодинамики были получены на основании обобщения большого экспериментального материала. В ней были введены наблюдаемые в опытах величины - понятие теплоты, температуры, давления, теплоемкости, внутренней энергии, энтропии и т. д. – и были установлены количественные соотношения между этими параметрами макросистем, не опираясь ни на какие модели вещества. Такое изучение называется феноменологическим.
В частности, в термодинамике было выведено уравнение состояния идеального газа, связывающее между собой такие его макроскопические параметры, как давление, температура и объем. В равновесных состояниях поведение идеального газа не зависит от его природы и описывается уравнением Клапейрона-Менделеева: pV = (m/M)·RT, где р – давление газа (Па); V – его объем (м3); m – масса всего объема газа (г); M – его молярная масса (г/моль); Т – абсолютная температура (К); R = 8,314 Дж/(моль·К) – универсальная газовая постоянная. Это уравнение также можно записать в виде: рV = Nk·T, где N –количество частиц газа в данном объеме, k = R/NA. = 1,38·10-23 Дж/К – постоянная Больцмана, NA = 6,022·1023 1/моль – постоянная Авогадро (количество частиц в одном моле вещества). Масса одной молекулы любого вещества молярной массе этого вещества M, деленному на число Авогадро NA, т.е. m1 =M/NA.
Смысл этих понятий был дан в молекулярно - кинетической теории (МКТ) и в статистической физике, где показано, что термодинамические величины – средние по объему значения физических величин, детально рассмотренных в статистике.
Молекулярно-кинетическая теория. Статистический смысл понятий - давления, температуры и внутренней энергии.
В основе молекулярно-кинетической теории лежит модель идеального газа. Идеальным называется газ, молекулы которого имеют пренебрежимо малый объем, не взаимодействуют на расстоянии друг с другом, хаотически движутся и сталкиваются друг с другом, а также со стенками сосуда по закону упругого удара.
Давление p определяется как сила, действующая на единицу поверхности. Хаотически двигаясь, молекулы газа сталкиваются со стенками сосуда, при этом их импульс меняется. Изменение импульса в единицу времени равно действующей силе: F = Δp/Δt. Чем больше скорость молекул и чем чаще они сталкиваются со стенкой, тем больше сила, действующая на единицу ее поверхности (давление). При прямом столкновении импульс меняется на противоположный по знаку, то есть его изменение Δp = 2p. Однако при движении под углом к стенке меняется только компонента импульса перпендикулярная ей. Если за ось x взять направление перпендикулярное стенке, то изменение импульса для одной молекулы можно записать как Δp = 2px = 2vxm, где m масса одной молекулы. Масса молекул газа одинакова, а вот компонента скорости vx для них может быть разной. Учитывая, что молекул очень много, и что они движутся хаотически, в качестве vx можно взять среднее значение этой компоненты скорости. В данной модели в виду хаотичности движения все направления одинаковы и молекулы могут двигаться как в сторону стенки, так и в противоположном направлении и простое усреднение привело бы к тому, что среднее значение vx было бы равно нулю. Для нахождения среднего значения vx надо найти средний квадрат этой составляющей <vx2> и извлечь корень. Из равноправности всех направлений, следует, что: <vx2> = <vy2> = <vz2> =(1/3)<v2>, где <v2> - среднее значение квадрата скорости молекул. Следовательно, изменение импульса в среднем для каждой молекулы при ударе о стенку равно:
Лабораторная работа № 9. Порядок выполнения работы.
Задание. Тепловое движение.
Ознакомьтесь с теоретической частью работы.
Откройте рабочее окно.
А). Нажмите кнопку Пуск. Пронаблюдайте за движением частиц и за изменением их мгновенных скоростей. Почему, не смотря на хаотичность движения частиц и постоянное изменение их скоростей, рассчитанное значение температуры, приведенное в окнах рядом с рабочим окном, остается неизменным? Нажмите кнопку Стоп и перепишите значения мгновенных скоростей частиц для левой части объема и для правой. Используя формулы в теоретической части, рассчитайте среднее значение квадрата скорости частиц, их кинетическую энергию и температуру для левой и правой части объема. Результаты расчета представьте в виде таблицы:
№ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | <v2> | <Eкин.> | T |
vл | - | - | - | ||||||||
vл2 | <vл2> | <Eкин.л> | Tл | ||||||||
vп | - | - | - | ||||||||
vп2 | <vп2> | <Eкин.п> | Tп |
Сравните полученный результат с температурами, приведенными в рабочем окне.