Вследствие большой разветвленности вакуумных систем мощных турбоагрегатов отыскание воздушных неплотностей путем опрессовки оказывается весьма трудоемким (опрессовывать приходится отдельные участки системы) и требующим значительного времени. К тому же такой способ не позволяет проверить возможные источники присосов воздуха, недоступные для визуального осмотра, недостаточно чувствителен и может применяться лишь при холодном, а не рабочем состоянии установки, например по окончании капитального ремонта турбины.
Более чувствительны и допускают применение их на ходу турбины методы отыскания воздушных неплотностей с помощью галогенных или гелиевых (масс-спектрометрических) течеискателей. Они позволяют во многих случаях при работающей турбине устранять повышенные присосы воздуха, обнаруженные при текущем эксплуатационном контроле за работой конденсационной установки.
Рис. 12.2. Реконструкция сальника задвижки:
а - запрессовка стального стакана в крышку задвижки; б - приварка чугунного стакана к крышке; 1 - грундбукса сальника; 2 - сальниковая набивка; 3 - стальной стакан; 4 - резиновые кольца толщиной 10 мм; 5 - фонарь гидроуплотнения; 6 - подвод конденсата на гидроуплотнение давлением 5-6 кгс/см2 (0,5-0,6 МПа); 7 - крышка задвижки с корпусом сальника; 8 - резиновое кольцо; 9 - стальное уплотнительное кольцо; 10 - клинкеты; 11 - резиновая прокладка фланцевого соединения крышки; 12 - шток задвижки; 13 - чугунный стакан
12.2.3. Галогенный течеискатель состоит из двух блоков: щупа, в котором расположен датчик, и измерительного блока, в котором сигнал датчика после его усиления поступает на указывающий стрелочный прибор и звуковое сигнальное устройство.
Чувствительным элементом датчика является диод, в котором анодом служит платиновая спираль (эмиттер), разогреваемая электрическим током до температуры 800-900 °C. При контакте раскаленной платиновой спирали с паром или газом, содержащим галоген (фреон, четыреххлористый углерод или др.), она резко увеличивает эмиссию положительных ионов, поступающих на катод, что используется для получения сигнала. Датчик может быть вмонтирован или в выносной (атмосферный) щуп или же в щуп, встроенный в находящуюся под разрежением трубу, по которой отсасывается из конденсатора паровоздушная смесь или производится отбор смеси, поступающей в воздушный насос.
Для обнаружения течей в вакуумной системе турбоагрегата проверяемые па плотность места (фланцевые или сварные соединения, сальники арматуры и др.) обдуваются паром или газом, содержащим галоген. Обычно в качестве индикатора используются пары фреона, поступающие через шланг с наконечником (соплом) из переносного баллона с жидким фреоном. При наличии в обдуваемом месте неплотности фреон проникает внутрь системы и удаляется из нее вместе с паровоздушной смесью, отсасываемой из конденсатора воздушным насосом. Обычно отбираемая проба паровоздушной смеси сперва охлаждается в поверхностном теплообменнике для уменьшенное содержания в ней водяного пара, а затем поступает в датчик, где омывает эмиттер. При наличии в пробе галогена в измерительном контуре возникает всплеск ионного тока, обнаруживаемый по показанию стрелочного прибора и звуковому сигналу.
При отыскании воздушных неплотностей в вакуумных системах турбоагрегатов могут применяться серийные галогенные течеискатели атмосферного и вакуумно-атмосферного типов ГТИ-3, ВАГТИ-4). Схемы их применения приведены на рис. 12.3 и 12.4.
Рис. 12.3. Применение галогенного течеискателя для отыскания мест неплотностей в вакуумной системе турбины при пароструйном эжекторе:
1 - пароструйный эжектор; 2 - воздухомер; 3 - охладитель паровоздушной смеси; 4 - щуп (датчик) течеискателя; 5 - измерительный блок; 6 - термометр; 7 - вентиль для выпуска помимо воздухомера; 8 - конденсатор; 9 - баллон с фреоном; 10 - отвод удаляемой смеси к охладителю
Рис. 12.4. Применение галогенного течеискателя для отыскания мест неплотностей в вакуумной системе турбины при водоструйном эжекторе:
1 - водоструйный, эжектор; 2 - гидрозатвор; 3 - конденсатор; 4 - охладитель паровоздушной смеси; 5 - струйный насос; 6 - вакуумный датчик; 7 - измерительный блок течеискателя; 8 - баллон с фреоном; 9 - проверяемая на плотность задвижка; 10 - устройство для пуска фреона; 11 - калибровочное сопло
13. ДЕАЭРАЦИЯ КОНДЕНСАТА В КОНДЕНСАТОРЕ
13.1. Деаэрирующая способность конденсатора
13.1.1. Требование ПТЭ о том, чтобы в конденсате, поступающем из конденсатора турбины в питательную систему котла, включающую в себя основной деаэратор, содержание кислорода не превосходило 20 мкг/кг, имеет целью предотвратить вынос в деаэратор при гидразинно-аммиачном водном режиме продуктов коррозии - окислов железа и меди, образующихся на участке "конденсатор-деаэратор". Поступая с водой из деаэратора в котел, эти продукты коррозии способствуют пережогу его экранных и конвективных труб.
При нейтрально-окислительном водном режиме ограничение содержания кислорода в конденсате, поступающем из конденсатора, позволяет более устойчиво поддерживать требуемый водный режим. 13.1.2. В условиях конденсации пара, содержащего примесь воздуха, в конденсаторе паровой турбины по пути движения парового потока в трубном пучке от входа в него до выхода отсасываемой воздухоудаляющим устройством паровоздушной смеси образуются, как было указано выше (см. разд. 2), две характерные зоны: интенсивной конденсации пара и охлаждения паровоздушной смеси, причем граница между этими зонами перемещается в зависимости от режимных условий. Чем меньше паровая нагрузка, температура, а при некоторых условиях и расход охлаждающей воды и чем больше присос воздуха, тем больше доля поверхности охлаждения конденсатора, приходящаяся на зону охлаждения паровоздушной смеси, в которой концентрация воздуха значительно выше, чем в зоне интенсивной конденсации, и благоприятнее условия для абсорбции, а главное механического захвата воздуха конденсатом, т.е. увеличения содержания кислорода в конденсате, стекающем из трубного пучка.
Однако в современных конденсаторах регенеративного типа с ленточной и модульно-ленточной компоновкой трубного пучка, обеспечивающей доступ части отработавшего пара в расположенную под пучком нижнюю часть парового пространства, при работе воздухоудаляющего устройства в режиме, не выходящем за пределы рабочего участка его характеристики, дегазация конденсата на его пути от трубного пучка до конденсатосборника обычно достаточна для поддержания в конденсате, удаляемом из конденсатора при различных эксплуатационных условиях, содержания кислорода до 10-20 мкг/кг, т.е. не превосходящего допустимое по ПТЭ [21].
Сказанное иллюстрируют опытные данные Союзтехэнерго для турбины K-100-90 с двумя пароструйными эжекторами ЭП-3-600, представленные на рис. 13.1 и 13.2. Графики показывают, что резкое увеличение содержания кислорода в конденсате наблюдается при значительном снижении паровой нагрузки конденсатора и температуры охлаждающей воды и сопутствует резкому повышению давления в конденсаторе из-за перегрузки эжекторов при повышении присоса воздуха, обусловленном увеличением размеров вакуумной зоны турбоагрегата с понижением D2 и t1в. При работе эжекторов на рабочем участке их характеристики изменение в широких пределах D2 и t1в практически не сказалось на содержании кислорода в конденсате. Аналогичные опытные данные получены для конденсаторов различных типов при температурах охлаждающей воды от 1 до 26 °C.
Рис. 13.1. Характеристика деаэрирующей способности конденсатора турбины К-100-90 по испытаниям в различных условиях:
1 - температура охлаждающей воды t1в = 5¸7 °C, расход воздуха Gв = 0,014¸0,0278 кг/с (50¸100 кг/ч);
2 - t1в = 6¸10 °C; Gв = 0,0028¸0,0033 кг/с (10¸12 кг/ч);
3 - t1в = 26 °C; Gв = 0,005 кг/с (18 кг/ч)
Рис. 13.2. Деаэрация в конденсаторе турбины K-100-90 при различных присосах воздуха:
1 - в работе один эжектор; 2 - в работе два эжектора (паровая нагрузка конденсатора близка к номинальной, температура охлаждающей воды к 6 °C)
Из сказанного следует, что конденсаторы с рационально спроектированным трубным пучком обеспечивают, как правило, достаточно высокую степень деаэрации конденсата отработавшего пара, поступающего в конденсатосборники, и не требуют при нормальных условиях их работы дополнительной деаэрации этого конденсата (например, в деаэрационных конденсатосборниках).
Применение в ряде конструкций конденсаторов специальных деаэрационных устройств, расположенных под трубным пучком или в конденсатосборниках, рассчитано в основном на дополнительную деаэрацию конденсата лишь в тех случаях, когда присосы воздуха в; вакуумную систему турбоагрегата значительно возрастают по сравнению с допустимыми по ПТЭ и не могут быть по условиям эксплуатации быстро устранены, а воздухоудаляющие устройства обеспечивают еще допустимое для работы турбины давление отработавшего пара.
В конденсаторах теплофикационных турбин с отопительной тепловой нагрузкой применение дополнительных деаэрационных устройств определяется условиями, рассмотренными ниже (см. п. 13.2.2).