Смекни!
smekni.com

Методические указания по эксплуатации конденсационных установок паровых турбин электростанций рд 34. 30. 501 (стр. 25 из 39)

13.2. Деаэрация в конденсаторе дренажей и добавочной воды

13.2.1. В конденсатор поступают, кроме отработавшего пара, также различные дренажи (из ПНД, холодильников пароструйных эжекторов и др.), причем дренажи из вакуумных аппаратов имеют обычно значительное содержание кислорода. Однако при направлении дренажей в паровой объем конденсатора (не под уровень конденсата в конденсатосборнике) и раздроблении их при этом на струи и капли дегазация дренажей оказывается достаточной и не вызывает ухудшения качества конденсата, забираемого из конденсатора. Это определяется еще тем, что массовый расход дренажей незначителен по сравнению с расходом отработавшего пара.

13.2.2. В конденсатор обычно поступает еще добавочная химически очищенная вода для восполнения потерь пара и конденсата в контуре электростанция (блока). Для конденсационных электростанций расход добавочной воды относительно невелик и составляет до 2-3% расхода пара на турбину. Для ТЭЦ вследствие невозврата конденсата пара, отбираемого на производственные нужды потребителей тепла, он может быть весьма значительным. К тому же паровая нагрузка конденсаторов теплофикационных турбин обычно значительно меньше номинальной.

При подводе добавочной воды в паровое пространство конденсатора через перфорированные трубы дегазация ее в условиях конденсационных электростанций, а иногда и ТЭЦ, так же, как и дегазация дренажей, даже при температуре добавочной воды, более низкой, чем температура насыщения пара в конденсаторе, оказывается достаточной для сохранения требуемого по ПТЭ содержания кислорода в смеси конденсата и добавочной воды на выходе из конденсатора.

Менее благоприятными являются условия в конденсаторах теплофикационных турбин с отопительной нагрузкой, в которые в течение отопительного периода поступает лишь незначительное количество пара, предназначенного для охлаждения проточной части ПНД. В таких конденсаторах поддержание в смеси конденсата и добавочной воды допустимого содержания кислорода может быть достигнуто с помощью встроенных в конденсатор деаэрационных устройств барботажного типа, эффективность которых обеспечивается подачей в них испаряющихся горячих дренажей. Применение указанных устройств экономичнее, чем подвод в деаэраторный конденсатосборник пара из отбора турбины или подача добавочной воды в основной деаэратор.

13.3. Предотвращение попадания в конденсат кислорода на участке

"конденсатор – деаэратор

13.3.1. Эксплуатационный контроль за содержанием кислорода в конденсате производится обычно путем периодического анализа пробы конденсата, отобранной из трубопровода после конденсатных насосов.

Однако даже при вполне удовлетворительной деаэрации в конденсаторе, обеспечивающей низкое, лежащее в пределах нормы содержание кислорода в конденсате отработавшего пара, концентрация кислорода в конденсате на выходе из конденсатных насосов зачастую оказывается более высокой и значительно превышающей допустимую по ПТЭ. Причиной этого являются присосы воздуха на заполненном конденсатном участке тракта от конденсатосборников конденсатора до вакуумной части конденсатного насоса включительно. Если воздух, проникающий в вакуумную часть системы, заполненную паром, в преобладающей его доле отводятся воздухоудаляющим устройством конденсационной установки, то воздух, проникающий через неплотности и с дренажами непосредственно в конденсат, остается в потоке конденсата, что и приводит даже при очень незначительных присосах воздуха к повышенному содержанию кислорода в конденсате на выхода из конденсатного насоса.

В случаях повышения концентрации кислорода за конденсатными насосами для отыскания неплотностей целесообразно отбирать пробы конденсата непосредственно из конденсатосборника, т.е. из-под вакуума, и сравнивать результаты анализов этих проб с результатами анализов проб, взятых в штатной точке после конденсатных насосов. Отбор проб из-под вакуума может быть осуществлен по методике, изложенной в [20].

13.3.2. Кислород проникает в конденсат на тракте "конденсатор - деаэратор" в результате подвода под уровень конденсата в конденсатосборник различных дренажей с большим содержанием кислорода, а также через неплотности в различных местах конденсатного тракта [22] в:

- фланцевых соединениях конденсатопроводов от конденсатора до конденсатных насосов;

- уплотнениях штоков задвижек;

- концевых уплотнениях конденсатных насосов горизонтального типа или стыков конденсатных насосов вертикального типа;

- линиях дренажа греющего пара ПНД, находящихся под вакуумом;

- концевых уплотнениях сливных насосов ПНД;

- сварных стыках конденсатосборника и других элементов конденсатора, находящихся под уровнем конденсата.

13.3.3. Для поддержания допустимого содержания кислорода в конденсате, деаэрированном в конденсаторе, должны быть осуществлены следующие мероприятия:

- выполнение всех вводов дренажей и других потоков, которые могут иметь значительное содержание кислорода, в паровую часть конденсатора с раздроблением жидкости на струи и капли. При этом должно быть исключено непосредственное попадание капельной влаги при пониженных объемных расходах отработавшего пара на выходные кромки последних ступеней турбины (трубки защищаются от действия жидких струй дефлекторами, а ввод жидких потоков в паровое пространство осуществляется в нижней части конденсатора);

- уплотнение всех фланцевых соединений трубопроводов конденсата, находящихся под вакуумом, прокладками из мягкой резины толщиной 4-6 мм;

- применение на всасывающей линии конденсатных насосов первого подъема и сливных насосов специальной вакуумной арматуры или герметизация уплотнений штоков установленных обычных задвижек (см. рис. 12.2); для задвижек с вертикальным расположением штока допускается установка ванн, охватывающих место уплотнения штока и имеющих постоянный подвод конденсата, обеспечивающий неизменный уровень его в ванне;

- установка на клинкеты задвижек запорного резинового кольца толщиной 10-15 мм, обеспечивающего герметичность входного отверстия штока при полностью открытой задвижке и позволяющего вести пере набивку сальника на работающем оборудовании;

- тщательное наблюдение за состоянием концевых уплотнений конденсатных и сливных насосов горизонтального типа, тщательное уплотнение стыков корпуса конденсатных насосов типа КсВ;

- монтирование байпасов на обратных клапанах насосов для проверки плотности корпуса конденсатных насосов, периодическая опрессовка насосов давлением конденсата при закрытой задвижке на всасывающей линии;

- тщательное обследование всех сварных соединений на участке "конденсатосборник – конденсатный насос", заполнение парового пространства водой и устранение выявленных неплотностей. Отыскание мест неплотностей может быть облегчено применением раствора флуоресцеина (см. п. 11.5.2). Такой же поиск неплотностей может быть произведен в зоне вакуумных ПНД.

14. ПРЕДОТВРАЩЕНИЕ ЗАГРЯЗНЕНИЯ И ПЕРИОДИЧЕСКАЯ ЧИСТКА КОНДЕНСАТОРОВ

14.1. Причины и характер загрязнения конденсаторов

14.1.1. Загрязнения трубок конденсаторов, особенно отложения на их внутренней поверхности, омываемой охлаждающей водой, а также забивание трубных досок и трубок со стороны входа воды более крупными предметами приводят к ухудшению теплотехнических показателей работы конденсаторов - коэффициента теплопередачи, температурного напора и давления отработавшего пара по сравнению с их значениями для соответствующих режимных условий по нормативным (заводским) характеристикам. Вызывается это малой теплопроводностью отложений на стенках трубок и увеличением гидравлического сопротивления конденсатора, приводящим к уменьшению расхода и скорости охлаждающей воды.

Вследствие существенного различия применявшихся для охлаждения конденсаторов вод по составу и количеству содержащихся в них примесей характер и интенсивность загрязнений конденсаторов с водяной стороны сильно зависят от местных условий. При прямоточной системе водоснабжения характер отложений в конденсаторах определяется в основном взвешенными веществами, органическими и минеральными примесями, содержащимися в воде, поступающей из естественного источника (реки, озера, моря), а при оборотной системе - от качества подпиточной воды, поступающей из естественного источника, ее упаривания при испарительном охлаждении, загрязнения ее при контакте с содержащим агрессивные газы и летучую золу воздухом в водоохладителе и др. В самой системе водоснабжения в охлаждающую воду могут попадать продукты коррозии металлов или разрушения других материалов, окалина, грат, а также развившиеся в системе и отмершие водные организмы.

14.1.2. В зависимости от указанных выше местных условий возможны следующие основные типы загрязнений конденсаторов, которые могут встречаться на практике порознь или в различных сочетаниях:

- отложения не растворенных в воде взвешенных веществ (золы, песка, глины, остатков растительных веществ, ила и др.), выпадающих, особенно при пониженных скоростях воды в трубках, в виде шлама;

- органические обрастания, вызываемые содержащимися в вода ответными и растительными микроорганизмами, образующими при их закреплении и развитии на стенках трубок слизистые отложения;

- минеральные обложения, вызываемые выпадением из пересыщенного раствора карбонатов кальция и магния (преимущественно при оборотном водоснабжения, см. п. 14.3.2) и гипса (при морской охлаждающей воде с высоким содержанием сульфатов);

- забивание трубных досок и трубок не удержанными решетками и сетками крупными примесями - водорослями, листьями, щепой и другим мусором, а также ракушками моллюсков, проникших в систему водоснабжения в виде личинок, а затем развившихся в ней и отмерших.