Смекни!
smekni.com

Концепции современного естествознания (стр. 15 из 23)

В пределах каждого периода металлические свойства, наиболее ярко выраженные у первого элемента периода, при переходе к последующим элементам постепенно ослабевают, а неметаллические — возрастают. Каждый период начинается типичным металлом, а кончается типичным неметаллом - од­ним из галогенов - и инертным газом.

Специфика изменения свойств у элементов, принадлежащих к малым и большим периодам различна. У элементов второго и третьего периода, отличающихся друг от друга числом электронов во внешнем слое химические свойства быстро изменяются при переходе от активных металлов к неметаллам. Активные металлы (Li, Na) разделены от активных неметаллов (F, C1) только пятью элементами соответствующих периодов. Другая картина наблюдается у элементов больших периодов, составляющих побочные подгруппы. Здесь число электронов во внешнем слое не изменяется. Поэтому все данные элементы, называемые переходными, обладают металлическими свойствами. Но и им присущи специфические свойства определяемые числом d-электронов в предпоследнем слое. Значение электронной структуры атомов особенно ярко прослеживается на примере лантаноидов. Все они имеют одинаковое число электронов в последнем и предпоследнем электронном слое. И все они очень близки между собой по химическим свойствам.

Для отрыва элек­трона от атома, т. е. для превращения атома в положительный ион, нужно затратить энергию. Эта энергия называется энергией ионизации. Чем больше заряд ядра и чем меньше радиус атома, тем сильнее притя­жение электрона к ядру, тем больше энергия ионизации. У элементов одного и того же периода заряд ядра постепенно растет, а радиус атома уменьшается, поэтому энергия ионизации растет. В главных подгруппах одной и той же группы периодической системы число электронных слоев возрастает, увеличиваются радиусы атомов, энергия ионизации падает.

Присоединение первого электрона к атому, приводящее к образованию однозарядного отрицательного иона, сопровождается выделением энергии. Эта энергия называется сродством к электрону. Сродство к электрону является мерой способности элемента проявлять неметаллические свойства. Сродство к электрону возрастает с увеличением заряда ядра и уменьшением радиуса атома.

Для более всесторонней оценки свойств элементов введено понятие электроотрицательности, как способности атомов принимать электроны. Чем больше величина электроотрицательности, тем сильнее выражены неметаллические свойства. Самым электроотрицательным элементом является фтор.

Изменение свойств соединений элементов можно проиллюстрировать на примере соединений элементов третьего периода. Первые элементы (натрий и магний) образуют соединения основного характера, соединения алюминия обладают амфотерными свойствами, у соединений последующих элементов (кремний, фосфор, сера и хлор) происходит увеличение кислотных свойств. Т.е. свойства соединений по периоду изменяются периодически от основных через амфотерные к кислотным.

Охарактеризовать кислотно-основные свойства можно с помощью реакций. Характерным свойством оснований является их способность взаимодействовать с кислотами с образованием солей, например,

KOH + HCl = KCl + H2O

Характерным свойством кислот является их способность взаимодействовать с основаниями с образованием солей, например,

2HNO3 + Ca(OH)2 = Ca(NO3)2 + 2H2O

Амфотерные гидроксиды могут взаимодействовать и с кислотами и с основаниями образуя соли, например,

Al(OH)3 + 3HCl = AlCl3 + 3H2O

Al(OH)3 + NaOH = Na[Al(OH)4]

При сплавлении с основаниями реакция протекает следующим образом:

спл.

Аl(OH)3 + NaOH = NaAlO2 + 2H2O

Окислительная и восстановительная способность элементов также зависит от их положения в периодической системе элементов Д.И.Менделеева. Так как в периодах с возрастанием порядкового номера элемента увеличивается энергия ионизации атомов, то уменьшается их восстановительная способность. Энергия сродства к электрону в периоде возрастает, следовательно, возрастают и окислительные свойства элементов. В главных подгруппах наблюдается обратная зависимость: с увеличением порядкового номера элемента растет их восстановительная способность и уменьшается окислительная.

Развитие науки об атоме, происходившее под знаменем периодического закона, позволило понять сущность превращения одного элемента в другой, практически овладеть расщеплением ядер атомов и извлечением ядерной энергии. Значение периодического закона в современной науке об атоме далеко не исчерпано. Нельзя назвать такой области естествознания, где бы периодический закон не оказал исследователю неоценимой услуги в анализе сложных природных явлений. На основе периодического закона построена естественная система элементов для геохимии. Работами академика А.Е.Ферсмана показано, что распределение элементов и их соединений между различными областями биосферы происходило в процессе длительного исторического развития земли в соответствии с периодическим законом. Все больше выявляется значение периодической системы в вопросах космологии и астрономии. Некоторые явления биохимического характера, связанные с ролью микроэлементов, в том числе и на живой организм, закономерно связаны с расположением элементов в периодической системе. Периодическая система и особенно понятие “места” элемента в системе дали возможность прогнозировать существование неизвестных элементов с их важнейшими свойствами и в дальнейшем открывать эти элементы.

Ныне учение о периодичности представляет один из краеугольных камней знаний о строении и свойствах материи, такое естественнонаучное обобщение, которое не может быть ни опровергнуто, ни даже поставлено под сомнение. Могут быть получены необычные химические соединения ( как это имело место в случае благородных газов), могут быть обнаружены необычные степени окисления у отдельных элементов, но общее представление о характере и содержании учения о периодичности едва ли изменится.

8. ОСОБЕННОСТИ БИОЛОГИЧЕСКОГО УРОВНЯ

ОРГАНИЗАЦИИ МАТЕРИИ

Современное естествознание, как мы уже говорили, представляет собой совокупность многих наук, тесно связанных между собой. Но поскольку природный мир многообразен, то каждая естественная наука имеет свой объект изучения. Одной из таких наук является биология. Определение предмета биологии на первый взгляд ка­жется довольно простым. Биология - это наука о жи­вом, его строения, формах активности, природных сообществах живых организмов, их распространении и развитии, связях друг с другом и с неживой природой.

Современная биологическая наука — результат длительного процесса развития. Интерес к познанию живого у человека возник очень давно, он был связан с его важнейшими потреб­ностями — в пище, лекарствах, одежде, жилье и т. д. Но только в первых древних цивилизованных обществах люди стали изучать живые организмы более тщательно, состав­лять перечни животных и растений, населяющих разные регионы, классифицировать их. Одним из первых биологов древно­сти был Аристотель.

В настоящее время биология представляет собой целый комплекс наук о живой природе. Структуру его можно рассмат­ривать с разных точек зрения. По объектам исследования биология подразделяется на вирусологию, бактериологию, ботанику, зоологию, антропо­логию. По свойствам живого в биологии выделяют­ся: морфология — наука о строении живых организмов; физио­логия — наука о функционировании организмов; молекулярная биология, изучающая микроструктуру живых тканей и клеток; экология, рассматривающая образ жизни растений и животных и их взаимосвязи с окружающей средой; генетика, исследую­щая законы наследственности и изменчивости.

Эта многоплановость комплекса биологических наук обу­словлена чрезвычайным многообразием живого мира. К на­стоящему времени биологами обнаружено и описано более 1 млн. видов животных, около полумиллиона растений, не­сколько сот тысяч видов грибов, более 3 тыс. видов бакте­рий. Причем мир живой природы исследован далеко не пол­ностью. Число не описанных видов оценивается по меньшей мере в 1 млн.

Так что же такое жизнь, живая природа?

8.1 Сущность живого, его основные признаки

Дать точное определение жизни весьма непросто. И это люди поняли очень давно. Современная биология при описании живого идет по пути перечисления основных свойств живых организмов. При этом подчеркивается, что только совокупность данных свойств может дать представление о специфике жизни.

К числу свойств живого обычно относят следующие:

1.Живые организмы характеризуются сложной, упорядо­ченной структурой. Уровень их организации значительно выше, чем в неживых системах.

2. Живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядо­ченности. Большая часть организмов прямо или косвенно ис­пользует солнечную энергию.

3. Живые организмы активно реагируют на окружающую среду. Если толкнуть камень, то он пассивно сдвигается с мес­та. Если толкнуть животное, оно отреагирует активно: убежит, нападет или изменит форму. Способность реагировать на внешние раздражения — универсальное свойство всех живых существ, как растений, так и животных.

4. Живые организмы не только изменяются, но и усложня­ются. Так, у растения или животного появляются новые ветви или новые органы, отличающиеся по своему химическому со­ставу от породивших их структур.

5. Все живое размножается. Эта способность к самовоспро­изведению, пожалуй, самая поразительная способность живых организмов. Причем потомство похоже, и в то же время чем-то отличается от родителей. В этом проявляется действие меха­низмов наследственности и изменчивости, определяющих эво­люцию всех видов живой природы.