Смекни!
smekni.com

Концепции современного естествознания (стр. 4 из 23)

Таким образом, три глобальные научные революции предопределили три длительных стадии развития науки, каждой из которых соответствует своя общенаучная картина мира. Это, конечно, не означает, что в истории науки важны одни лишь революции. На эволюционном этапе также делаются научные открытия, создаются новые теории и методы. Однако бесспорно, что именно революционные сдвиги, затрагивающие основы фундаментальных наук, определяют общие контуры научной картины мира на длительный период.

4. ПРИНЦИПИАЛЬНЫЕ ОСОБЕННОСТИ СОВРЕМЕННОЙ ЕСТЕСТВЕННОНАУЧНОЙ КАРТИНЫ МИРА

Главная принципиальная особенность современной естественнонаучной картины мира – принцип глобального эволюционизма. Появление принципа глобального эволюционизма означает, что в современном естествознании утвердилось убеждение в том, что материя, Вселенная в целом и во всех ее элементах не могут существовать вне развития. Это принципиально новый для естествознания взгляд на вещи, хотя сама идея эволюции зародилась в XIX в. Наиболее сильно она прозвучала в учении Ч. Дарвина о происхождении видов.

Идея эволюции проникла и в другие области естествозна­ния. В геологии, например, окончательно утвердилась концеп­ция дрейфа континентов. А экология, биогеохимия, антропо­логия были “эволюционны” изначально.

Таким образом, современное естествознание вправе сфор­мулировать лозунг: “Все существующее есть результат эволю­ции!” Но если в биологии концепция эволюции имеет давние ус­тойчивые традиции, то физика и химия, как уже было сказано, к ней только привыкают. Облегчить этот процесс призвано но­вое междисциплинарное научное направление, появившееся в 70-х годах, — синергетика.

4.1 Синергетика — теория самоорганизации

В классической науке XIX в. господствовало убеждение, что материи изначально присуща тенденция к разрушению всякой упорядоченности, стремление к исходному равновесию (в энергетическом смысле это и означает неупорядоченность или хаос). Такой взгляд на вещи сформировался под воздействием равновесной термодинамики. Эта наука занимается изучением процессов взаимопревращения различных видов энергии.

Как известно, в природе процессы протекают в определенном направлении. Процессы, которые могут протекать без внешнего воздействия, т.е. без затраты работы извне, называются самопроизвольными. Установить направление самопроизвольно протекающих процессов позволяет второе начал термодинамики: “теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому”.

В качестве критерия самопроизвольности протекания процессов немецким ученым Р.Клаузиусом была предложена функция, названная энтропией (S). Энтропия является критерием самопроизвольности протекания процесса в изолированных системах. Для обратимых изотермических процессов изменение энтропии:

DS = Q/T

Рассмотрим систему, состоящую из двух сосудов, в которых находятся молекулы различных газов, не реагирующих между собой, при одинаковых внешних условиях.

Если убрать перегородку между сосудами, то начинает протекать самопроизвольный процесс смешения двух газов без изменения энергетического запаса всей системы. Обратный же процесс разделения газов самопроизвольно не пойдет. Вероятность этого процесса практически равна нулю. Смешанное состояние газов является более вероятным и более неупорядоченным.

Самопроизвольный процесс смешения газов будет протекать до тех пор, пока не наступит состояние равновесия. При этом достигается наибольшая вероятность системы. Чем больше частиц, тем больше термодинамическая вероятность, и тем более беспорядочно расположение частиц. Следовательно, при необратимых процессах в изолированных системах происходит возрастание вероятности.

Австрийский физик Л.Больцман связал понятие энтропии с вероятностью (W) уравнением: S = k lnW, где k - постоянная Больцмана. Из уравнения Больцмана следует, что энтропия является мерой вероятности, а также мерой неупорядоченности системы.

Следовательно, в изолированных системах всякий необратимый самопроизвольно протекающий процесс сопровождается возрастанием энтропии: DS>0. С возрастанием неупорядоченности и ростом числа частиц энтропия растет.

Статистическая природа второго начала термодинамики не позволяет применить его к с системам любых размеров. Распространяя второе начало термодинамики на Вселенную, как изолированную систему, Клаузиус сделал вывод, что возрастание энтропии приведет в конце концов к полному выравниванию температур, т.е. наступит “тепловая смерть вселенной”. Из хаоса, как утверждали древние греки, Вселенная родилась, в хаос же, по предположению классической термодинамики, и возвратится.

Возникает, правда, любопытный, вопрос: если Вселенная эволюционирует только к хаосу, то как она могла возник­нуть и сорганизоваться до нынешнего упорядоченного со­стояния. Живая природа почему-то стремилась прочь от термодинамического равновесия и хаоса. Налицо была явная нестыковка законов развития неживой и живой природы.

После замены модели стационарной Вселенной на разви­вающуюся, в которой ясно просматривалось нарастающее ус­ложнение организации материальных объектов — от элементар­ных и субэлементарных частиц в первые мгновения после Большого взрыва до звездных и галактических систем, — несо­ответствие законов стало еще более явным. Ведь если принцип возрастания энтропии столь универсален, как же могли воз­никнуть такие сложные структуры? Стало ясно, что для сохранения непротиворечивости общей картины мира необходимо постулировать наличие у материи в целом не только разрушительной, но и созидательной тенденции. Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться. На этой волне и возникла синергетика — теория самоорганизации. Ее разработка началась не­сколько десятилетий назад. В настоящее время она развивается по нескольким направлениям: синергетика (Г. Хакен), неравновесная термодинамика (И.Р. Пригожин) и др.

Самоорганизация – природный скачкообразный процесс, переводящий открытую неравновесную систему, достигшую в своем развитии критического состояния, в новое устойчивое состояние с более высоким уровнем сложности и упорядоченности по сравнению с исходным.

Общий смысл комплекса синергетических (термин Г. Хакена) идей, которые развивают эти направления, заключается в следующем:

- процессы разрушения и созидания, деградации и эволю­ции во Вселенной равноправны;

- процессы созидания (нарастания сложности и упорядо­ченности) имеют единый алгоритм, независимо от приро­ды систем, в которых они осуществляются. Таким образом, синергетика претендует на открытие некоего универсального механизма, при помощи которого осуществляется самоорганизация как в живой, так и неживой приро­де. Под самоорганизацией при этом понимается спонтанный переход открытой неравновесной системы от менее сложных и упорядоченных форм организации к более сложным и упорядо­ченным. Системы прежде всего должны быть:

- открытыми, т.е. обмениваться веществом или энергией с внешней средой;

- существенно неравновесными, или находиться в состоянии, далеком от термодинамического равновесия.

Но именно такими являются большинство известных нам систем. Изолированные системы классической термодинамики - это определенная идеализация, в реальности они — исключение, а не правило. Сложнее обстоит дело с Вселенной в це­лом. Если считать Вселенную открытой системой, то что может служить ее внешней средой? Современная физика полагает, что для вещественной Вселенной такой средой является вакуум. Итак, синергетика утверждает, что развитие открытых и сильно неравновесных систем протекает путем нарастающей сложности и упорядоченности. В цикле развития такой систе­мы наблюдаются две фазы:

1) период плавного эволюционного развития, с хорошо предсказуемыми линейными изменениями, подводящими в итоге систему к некоторому неустойчивому критическому со­стоянию;

2) выход из критического состояния одномоментно, скач­ком и переход в новое устойчивое состояние с большей степе­нью сложности и упорядоченности.

Важная особенность второй фазы заключается в том, что переход системы в новое устойчивое состояние неоднозначен. Достигшая критических параметров систе­ма из состояния сильной неустойчивости как бы “сваливается” в одно из многих возможных, новых для нее устойчивых со­стояний. В этой точке эволюционный путь системы, можно сказать, разветвляется, и какая именно ветвь развития будет выбрана — решает случай! Но после того как “выбор сделан” и система перешла в качественно новое устойчивое состояние — назад возврата нет. Этот процесс необратим. А отсюда следует, что развитие таких систем имеет принципиально непредсказуе­мый характер. Можно просчитать варианты возможных путей эволюции системы, но какой именно будет выбран — одно­значно спрогнозировать нельзя.

Таким образом, хаос не только разрушителен, но и созидателен, конструктивен; развитие осуществляется через неустойчивость (хаотичность).

4.2 Хронология эволюции Вселенной

Мир, в котором мы живем, состоит из разномасштабных открытых систем, развитие которых подчиняет­ся общим закономерностям. При этом он имеет свою долгую историю, в общих чертах известную современной науке. При­ведем хронологию наиболее важных событий.

20 млрд. лет назад — Большой взрыв.

3 минуты спустя — образование вещественной основы Вселенной

(фотоны, нейтрино и ан­тинейтрино с примесью ядер водо­рода, гелия и электронов).

Через несколько

сотен тысяч лет — появление атомов (легких элементов).