При создании сложных поликомпонентных питательных систем необходимо исходить из различных биохимических и энергетических потребностей микроорганизмов. Для лучшего проявления жизнедеятельности и биохимической активности патогенных и других микробов в средах необходимо создавать оптимальные условия для их роста и размножения и одновременно вводить ферментируемые субстраты (углеводы, многоатомные спирты, аминокислоты и др.) с наиболее чувствительными индикаторами, которые быстро бы регистрировали их ферментацию. В результате применения оптимальных полисубстратных сред производится выделение и накопление чистой культуры микробов с одновременным определением их биохимических признаков.
Перспективным следует рассматривать развитие энзимоиндикационных методов, в которых субстрат с индикатором отделен от питательной среды и фиксирован на специальном носителе. В нашей стране разработаны углеводно-бумажные диски с защитной пленкой (бумажные реагенты для определения дезаминаз у микробов) и их аналоги БИС (бумажно-индикаторные системы), углеводно-бумажные поплавки, углеводно-полимерные пленки . Все эти препараты являются весьма перспективными, они позволяют в течение кратчайшего срока (3—5 ч), используя общепринятые питательные среды и лабораторную посуду, определять ферментативную активность различных видов микроорганизмов.
Автономный препарат — карандаш-фермент, не имеющий аналогов ни у нас, ни за рубежом, позволяет без применения питательных сред непосредственно на предметном стекле определять биохимические свойства микробов.
Полисубстратная тест-система и энзимоиндикаторная лента используются для одновременной идентификации 20 биохимических признаков у микробов. Это новые виды простых «долгоживущих» препаратов, предназначенных для быстрого и экономичного определения биохимических свойств микробов.
Электрофизический метод определения ферментативной активности микробов включает посев микробной культуры на жидкие питательные среды, содержащие пептонную воду, различные углеводы, многоатомные спирты, аминокислоты с последующим ферментативным расщеплением исследуемых веществ и образованием различных ионизированных продуктов распада, обнаруживаемых специальной электронной аппаратурой. Результаты энзимоиндикации регистрируются через 45—60 мин с момента посева материала. Метод позволяет обнаружить и идентифицировать конечные продукты распада, то есть конечные мотаболиты с определением их биохимической и химической природы. Безусловно, электрофизический метод заслуживает пристального внимания и нуждается в дальнейшем изучении и доработке.
2. Иммунологическое направление, связанное с быстрым определением как отдельных специфических детерминант, так и с индикацией целых антигенных групп и комплексов, характеризующих роды, виды и серовары бактерий. К собственно иммунологическому направлению мы относим классические иммунологические методы, основанные на использовании естественных реагентов. Реакции преципитации в жидкости по Асколи и в геле по Оухтерлоню и Манчини (особенно их микроварианты) сохраняют свое значение как методы экспресс-индикации патогенных микробов и выявления их антигенов в различных материалах.
Перспективными являются рапид-системы для одновременной и быстрой индикации различных видов микроорганизмов в реакциях микроагглютинации, хотя по-прежнему не решены вопросы создания оптимальных видов и наиболее экономичных форм таких систем. Иммунологические принципы распознавания антигенов являются весьма тонкими, специфическими, чувствительными, с большими индикационно-диагностическими возможностями. Комплексирование иммунологических принципов с физическими, химическими и некоторыми другими принципами способствовало дифференциации иммунологического направления на ряд самостоятельных направлений, которые приводятся ниже.
3. Иммунофизическое направление, использующее различные по природе, форме и величине виды мелкодисперсных носителей (сорбентов) антигенов и антител, способствующих повышению чувствительности комплексных иммунологических методов.
Реакции пассивной гемагглютинации и их модификации связаны с использованием эритроцитарных диагностических препаратов. Эритроцитарную диагностику с успехом применяются для ускоренного обнаружения и идентификации как патогенных, так и условно-патогенных микроорганизмов (например, возбудителей туляремии, бруцеллеза, сальмонеллеза и др.) в различных патологических материалах, получаемых от больных, и в объектах внешней среды. Реакции с эритроцитарными диагностикумами являются весьма чувствительными, и в этом отношении часто превосходят другие серологические реакции. Они введены в официальные инструкции по экспресс-индикации бактериальных агентов в элементах внешней среды и в материалах, полученных от пораженных людей и животных.
Одновременно продолжаются поиски новых носителей антигенов и антител, которые были бы безантигенными, стабильными, не разрушающимися при длительном хранении, а применяемые реакции — простыми по технике постановки (например, стекольные тесты) и исследования с их помощью — экономичными.
Совершенствуются реакции с применением цветных целлюлозных частиц в качестве носителей антигенов и антител. Положительными свойствами такого рода препаратов являются: 1) отсутствие собственной антигенности; 2) стабильность при длительном хранении; 3) демонстративность и простота техники постановки реакции, обычно на предметном стекле; 4) высокая скорость прохождения реакции; 5) экономичность.
Кроме того, полезным и оправданным считаем поиск новых носителей антигенов и антител. В этом отношении перспективными являются ионообменные смолы, латексы, целлюлоза и ее производные и ряд других веществ, которые могут способствовать повышению чувствительности серологических реакций.
4. Иммунохимическое направление, связанное с использованием разнообразных комплексных соединений специфических антител или антигенов с химическими веществами. Присоединенные химические вещества придают им новые феноменологические способности и свойства, тем самым, расширяя возможности экспресс-индикации микробных агентов в частности и лабораторного анализа вообще.
Большую популярность и практическую значимость приобрели методы быстрого иммунофлуоресцентного анализа (прямой, непрямой, антикомплементарный), которые ныне официально используются как методы экспрессной индикации и быстрого определения микроорганизмов.
Дальнейшее развитие весьма перспективного иммунохимического направления во многом зависит от химиков, которые должны разработать достаточно яркие новые красители, вступающие в соединения со специфическими антителами и антигенами. В результате могут быть получены препараты с новыми феноменологическими свойствами, позволяющими проводить экспресс-индикацию микробных культур и отдельных клеток с помощью широко распространенных микроскопических устройств (типа МБИ различных марок).
5. Иммуноферментное направление, интенсивно развивающееся в последние годы. Разработаны прямой, непрямой, антикомплементарный и другие методы быстрого обнаружения микробов путем использования иммуноэнзимологического принципа; предложены новые виды ферментов, а также разнообразные виды хромогенных субстратов. Данное направление является весьма перспективным, развитие его может привести в ближайшие годы к появлению новых методов экспресс-индикации микроорганизмов.
6. Иммуноэлектрофоретическое направление успешно развивается с конца 50-х годов. Разработаны многочисленные методы иммуноэлектрофореза. Однако для целей экспресс-индикации микробов чаще прибегают к встречному иммуноэлектрофорезу. Применение новых химических красителей, ферментной или радиоактивной метки позволит резко повысить чувствительность метода иммуноэлектропреципитации.
7. Иммунорадиологическое направление связано с использованием разнообразных конъюгатов специфических антител или антигенов, соединенных с радиоактивными веществами, которые придают им новые феноменологические свойства и способности, расширяя возможности экспресс-индикационного метода. Весьма перспективно дальнейшее развитие иммунорадиологического направления, так как оно несомненно приведет к созданию новых, простых методов экспресс-индикации микроорганизмов.
8. Микроцитологическое направление быстрого цитоморфо-логического анализа связано с использованием светлопольной, фазово-контрастной или люминесцентной микроскопии бактериологических мазковых препаратов, обработанных и окрашенных красителями, позволяющими быстро идентифицировать микроорганизмы по их морфологии и специфическим структурным элементам микробной клетки. Исследованию подвергают как нативный (гной, мокрота, моча, СМЖ, различные экссудаты и др.), так и обогащенный (например, центрифугированием, фильтрованием и другими методами) патологический материал.
9. Бактериологическое направление связано с ускоренным выделением и накоплением бактериальных популяций патогенных, условно-патогенных и санитарно-показательных микроорганизмов. Оно основано на использовании оптимальных ростовых питательных сред, содержащих необходимые биостимуляторы, для ускоренного получения бактериальной культуры и частичной их идентификации по совокупности культуральных признаков.
10. Фагодиагностическое направление, которое предусматривает, с одной стороны, идентификацию микробов с помощью специфических индикаторных бактериофагов, а с другой,— обнаружение и индикацию специфических фагов в патологическом и другом материалах с помощью индикаторных микробных культур.