Смекни!
smekni.com

«Проведение корректировки формулы расчета риска актива (стандартное отклонение доходности). Определение последствий для capm» (стр. 3 из 4)

Рис. 4

1.4 Опыт предшественников.

Стандартное отклонение как статистический способ измерения волатильности редко используется как самостоятельный индикатор, чаще всего в качестве компонента других индикаторов. Можно ли это объяснить недоверием стандартному отклонению как мере риска, не знаю, но факт на лицо.

Изучая работы и исследования, проводившиеся в данном направление, я не нашла ни один источник, указывающий на то, что стандартное отклонение нельзя применять в качестве меры риска актива. Нет ни одной работы (из тех, что я изучила), говорящих о том, что формулы стандартного отклонения нужно изменить полностью. Есть высказанные и обоснованные замечания, были выявлены некоторые неточности в конкретных примерах. И, разумеется, были предложены свои методы дополнения стандартного отклонения для оценки риска финансового актива и составления прогнозов.

Результатом одного из таких анализов является канал стандартных отклонений(Standard Deviation Channel).

Канал Стандартных Отклонений строится на основе Тренда Линейной Регрессии, которая представляет собой обыкновенную линию тренда, построенную между двумя точками на ценовом графике методом наименьших квадратов. В результате эта линия оказывается точной средней линией изменяющейся цены. Ее можно рассматривать как линию "равновесной" цены, а любое отклонение от нее вверх или вниз указывает на повышенную активность соответственно покупателей или продавцов.

Standard Deviation Channel состоит из двух параллельных линий, равноудаленных вверх и вниз от Тренда Линейной Регрессии. Расстояние между границами канала и линией регрессии равно величине стандартного отклонения цены закрытия от линии регрессии (рис.5). Все ценовые изменения происходят в границах Standard Deviation Channel, где нижняя граница играет роль линии поддержки, а верхняя — линии сопротивления (рис.6). Обычно цены выходят за границы канала лишь на короткое время. Если же они остаются за пределами канала дольше обычного, то это предвещает возможность разворота тенденции [9].

Линии сопротивления и поддержки называются еще линиями Боллинджера. Поддержка (Support) — это уровень, при котором цены контролируют покупатели (быки, bulls), не допускающие их дальнейшего снижения.

Сопротивление (Resistance), наоборот — уровень, при котором цены контролируют продавцы (медведи, bears), не допускающие их дальнейшего подъема. Цена, по которой совершается сделка, — это цена, устраивающая и быка, и медведя. Она отражает совпадение их ожиданий [10].

Уровни поддержки показывают цену, при которой большинство инвесторов рассчитывают на ее повышение. Уровни сопротивления показывают цену, при которой большинство инвесторов считают, что она снизится.

Стандартное отклонение может быть построено на графике, используя индикатор ширины Полос Боллинджера в большинстве графических программ. Так как ширина Полос Боллинджера формирует два стандартных отклонения выше и ниже Скользящей средней, то значение общего стандартного отклонения будет делить ширину Полос Боллинджера на две абсолютно одинаковые ширины [11].

Рис. 5

Рис.6

II Глава. Корректировка стандартного отклонения и ее последствия.

2.1. Метод корректировки стандартного отклонения.

Как известно, главная функция традиционного стандартного отклонения заключается в определении диапазона изменчивости цены вокруг среднего скользящего и определения текущей диспозиции цены по отношению к среднему скользящему и границам диапазона. Так называемый приближенный статистический метод позволяет определить диапазон изменчивости цены вокруг МА как приблизительно 4СО с вероятность около 95.5 %. Согласно этому правило верхняя граница диапазона будет составлять примерно 2СО над средним скользящим, соответственно нижняя граница диапазона будет составлять 2СО под средним скользящим. Иногда для придания большей статистической значимости полученному диапазону его границы расширяют до 3 СО в каждую сторону. Вероятность того, что реальная цена будет колебаться в границах +/- трех стандартных отклонений от среднего составляет 99.7 %.

В 1.3. пункте данной работы уже было сказано о том, что очень в редких случаях стандартное отклонение вниз и вверх от среднего значения будет одинаковым, что можно объяснить количеством положительных и отрицательных доходностей. Поэтому, думаю, имеет смысл рассматривать отрицательную и положительную доходности отдельно.

Чтобы избежать появления шумов (ошибок) в наших расчетах, а также для более точных итоговых выводов нужно будет последовательно взять два средних значения положительной и отрицательной доходности. Первое среднее значение служит вспомогательным значением для нахождения второго. Цель последнего непосредственно сгладить шумы.

В итоге мы получим два средних значения отдельно для положительной и отдельно для отрицательной доходности (рис.7). Диапазон, необходимый нам для подсчета общего стандартного отклонения равен расстоянию от второго среднего значения отрицательной доходности (самая нижняя линия на графике 7) до второго среднего значения положительной доходности (самая верхняя линия на графике 7).

Этот метод позволяет нам достичь сглаженного стандартного отклонения, которое будет более точно отражать ситуацию на рынке.

Как и в методе канала стандартных отклонений, мы можем рассмотреть два стандартных отклонений. Однако в нашем случае они окажутся разными, потому что положительную и отрицательную доходности мы рассматривали отдельно . Для нашего примера (акции Газпрома за 2007 год, ММВБ), значение стандартного отклонения положительной доходности будет равным 0,563%, а значение стандартного отклонения отрицательной доходности будет равным 0,540%. Общее стандартное отклонение получается равным 1, 143%. Ранее, когда мы считали общее стандартное отклонение ежедневной доходности простым способ, не выделяя для этого специального диапазона (пункт 1.2), оно получилось равным 1,615%. Разница составляет 0, 572%.

Ход выполнения корректировки:

1. Через экспорт данных находим цены закрытия какого либо актива за определенный период. В нашем случае мы выбрали акции Газпрома на ММВБ, период - 2007 г., периодичность – день.

2. Находим доходность цен закрытия на весь период.

3. Считаем среднее значение доходности. В нашем случае это ноль, впрочем, в любом случае значение должно быть близко к нулю.

4. Выделяем отдельно значения положительной и отрицательной доходности.

5. Находим средние значения отдельно для положительной и отрицательной доходности. (Первое среднее значение)

6. Находим точку максимума для значений положительной доходности и точку минимума для значений отрицательной доходности.

7. Считаем второе среднее значение для положительной доходности между расстоянием от первого среднего значения и точкой максимума. Аналогично для отрицательной доходности, только расстояние нужно будет брать от первого среднего значения до точки минимума.

8. Находим стандартное отклонение для диапазона между двумя вторыми средними значениями положительной и отрицательной доходности.

2.2 Последствия корректировки стандартного отклонения в модели САРМ

Допущения, при которых работает модель САРМ (Capital Asset Pricing Model):

1. Ожидания инвесторов однородны, то есть все они обладают одинаковой информацией и воспринимают ее одинаковым образом.

2. Отсутствие транзакционных издержек, то есть для инвесторов не существует препятствий в покупке тех бумаг, которые они хотят приобрести.

3. Инвесторы рациональны и стремятся максимизировать свои индивидуальные функции полезности, что означает, что они склонны избегать риск.

4. Инвестиции рассчитаны только на один период, таким образом, долгосрочные стратегии не влияют на текущие цены.

5. Все инвесторы имеют возможность брать и давать деньги в долг по безрисковой ставке, что обеспечивает линейную зависимость между риском и доходностью.

6. Все активы абсолютно делимы и совершенно ликвидные, то есть всегда могут быть проданы на рынке по существующей цене.

7. Количество всех финансовых активов заранее определено и фиксировано.

8. Не принимаются во внимание налоги.

9. Все инвесторы принимают цену как экзогенно заданную величину, то есть предполагая их действия по покупке и продаже ценных бумаг не оказывает влияния на уровень их цен.

САРМ основана на наличии идеального рынка капитала. В центре внимания коллективное поведение всех инвесторов на рынке, что позволяет выявить характер конечной равновесной зависимости между риском и доходность каждой ценной бумаги.

Модель САРМ базируется на формуле зависимости доходности актива (ri) от коэффициента Бета, доходности рынка и безрискового актива [12].

ri = rm + β * (rm – r0)

β=Covimm, или β= σim * Corrim [13].

σi= σm + ⌂ σi

Риск актива (σi) состоит из системного риска (σm), он одинаков для всех эмитентов, и специфического риска (⌂ σi), присущего только данной компании [14].

В предыдущей главе, учитывая нашу корректировку, мы нашли ⌂ σi. Теперь нам нужно найти σm (системный риск, то есть рыночный). Так как ранее мы использовали акции Газпрома на ММВБ, то и в этот раз для подсчета системного риска будем доходность индекса ММВБ за тот же период. Система подсчета стандартного отклонения индекса MICEX согласно нашей корректировке та же самая, что мы использовали в предыдущей главе. Находится два средних значения отдельно для отрицательной и положительной доходности, считается стандартное отклонение от диапазона между двумя крайними средними значениями. (рис.8)