Согласно нашим расчетам скорректированное σm равно 0,964%, не скорректированное- 1,422%. Разница 0,458%.
Отсюда скорректированное σi = 0,964% + 1, 143% = 2, 107%. Не скорректированное σi = 1,422% + 1, 615% = 3,037%
Можно заметить, что скорректированные значения всегда получаются меньше чем нескорректированные, что можно объяснить сглаживаем стандартного отклонения от шумов.
Рис. 8
Для нахождения β воспользуемся формулой β= σi/σm * Corrim.
β - коэффициент характеризует степень риска, с которым связано владение конкретной ценной бумаги, а также измеряет изменчивость данной акции по сравнению со средней акцией или рынком [15].
Корреляция является статистической мерой взаимодействия двух случайных переменных.
Коэффициент корреляции считается по формуле[16].
Как видно, в формуле коэффициента корреляции содержатся два значения стандартного отклонения, актива и рыночного индекса. Поэтому, считая коэффициент корреляции можно было бы тоже применить корректировку стандартного отклонения, однако здесь возникает сложность. Корректируя стандартное отклонения, мы брали определенные диапазоны доходности и уже по ним считали ст. отклонение. Дело в том, что диапазоны для актива и индекса получаются разными, у актива он чуть меньше чем у индекса. Из этого представляется невозможным подсчет корреляции, так как требуемые массивы должны быть одинаковыми, а у нас они разные. Исходя из всего вышеперечисленного, для дальнейших расчетов мы будем использовать коэффициент корреляции, посчитанный простым способом.
Коэффициент корреляции равен 0,862 (высокая положительная корреляция). Отсюда β=2,107/0,964 + 0,862=3,047. Это значит, что, если доходность рынка ММВБ вырастит на 1%, доходность акций Газпрома вырастит на 3,047%.
Если посчитать β со стандартными отклонениями, посчитанными обычным способом, то β=3,037/1,422 + 0,862 = 2,997. То есть скорректированное β прогнозирует большую зависимость доходности акции от доходности рынка. Хотя в любом случае доходность акций Газпрома высокочувствительна к систематическому риску, вознаграждение за систематический риск в такой компании должно расти быстрее, чем у других компаний. Такие акции обладают большой изменчивостью, чем рыночный индекс и носят название «агрессивные» акции [17].
Для подсчета ожидаемой доходности актива по модели САРМ нам необходимо иметь данные рыночной доходности и безрискового актива за период. Для нашего примера rm= -0,562, r0 = 0,115
Согласно модели САРМ ожидаемая доходность актива, основанная на корректировке стандартного отклонения, ri = -0,562+3,047*(-0,562-0,115)=1,5.
Если считать требуемую доходность актива на основе простого стандартного отклонения, мы получим ri = - 0,562+2,997*(-0,562 – 0,115)= 1,4.
Таким образом, корректируя стандартное отклонение, мы получим более высокое значение требуемой доходности актива в модели САРМ.
Таблица полученных результатов | |
С корректировкой стандартного отклонения | Без корректировки стандартного отклонения |
σm=0,964% | σm=1,422% |
σi = 2, 107%. | σi =3,037% |
β=3,047 | β=2,997 |
ri =1,5 | ri =1,4 |
Для проверки расчетов Бэты скор. и не скор. станд. отклонения возмем период: февраль 2008 года, и посмотрим какой из двух расчетов стандартного отклонения лучше объясняет изменение котировок. Составим портфель, состоящий из 5 активов: акции РАО ЕЭС, акции Сбербанка, акции Татнефть, акции Газпрома и гос. облигации. Удельные веса бумаг одинаковы, все по 20%.
Риски бумаг | ||
Скорректированные | Не скорректированные | |
РАО ЕЭС | 1,24% | 2,2% |
Сбербанк | 1,25% | 1,97% |
Татнефть | 1,13% | 1,79% |
Газпром | 1,64% | 2,02% |
Гос. облигации | 0,12% | 0,19% |
Ковариации доходностей бумаг | |||||
Гос. облигац. | РАО ЕЭС | Сбербанк | Татнефть | Газпром | |
Гос облигац. | - | 0,001 | 0,000461 | 0,00065 | -0,00017 |
РАО ЕЭС | 0,001 | - | 0,011 | 0,010 | 0,024 |
Сбербанк | 0,000461 | 0,011 | - | 0,022 | 0,029 |
Татнефть | 0,00065 | 0,010 | 0,022 | - | 0,021 |
Газпром | -0,00017 | 0,024 | 0,029 | 0,021 | - |
Доходность портфеля определяется как средневзвешенное доходностей составляющих его активов.
Решение. Риск портфеля с нескорректированными стандартными отклонениями равен:
1) Для одной бумаги (РАО ЕЭС) = 2,2%
2) Для двух бумаг (РАО ЕЭС, Сбербанк) = 0,5*0,5*2,2*2,2 + 0,5*0,5*1,97*1,97 + 2*0,5*0,5*0,011 = 1,21+ 0,97 + 0,0055 = 2,19%
3) Для трех бумаг (РАО ЕЭС, Сбербанк, Татнефть) = 0,333*0,333*2,2*2,2 + 0,333*0,333*0,011 + 0,333*0,333*0,01 + 0,333*0,333*1,97*1,97 + 0,333*0,333*0,011 + 0,333*0,333*0,022 + 0,333*0,333*0,0179*0,0179 + 0,333*0,333*0,01 + 0,333*0,333*0,022 = 0,0000536 + 0,00121 + 0,0011 + 0,0000427 + 0,00121 + 0,00242 + 0,0000352 + 0,0011 + 0,00242 = 0,0002104*100% = 2,104%
4) Для четырех бумаг (РАО ЕЭС, Сбербанк, Татнефть, Газпром) =0,25*0,25*0,022*0,022 + 0,25*0,25*0,011 + 0,25*0,25*0,01 + 0,25*0,25*0,024 + 0,25*0,25*0,0197*0,0197 + 0,25*0,25*0,011 + 0,25*0,25*0,022 + 0,25*0,25*0,029 + 0,25*0,25*0,0179*0,0179 + 0,25*0,25*0,01 + 0,25*0,25*0,022 + 0,25*0,25*0,021 + 0,25*0,25*0,0202*0,0202 + 0,25*0,25*0,024 + 0,25*0,25*0,029 + 0,25*0,25*0,021 = 0,00003025 + 0,0006875 + 0,000625 + 0,0015 + 0, 0000242 + 0,0006875 + 0,001375 + 0,001825 + 0,00002 + 0,000625 + 0,001375 + 0,0013125 +0,0000265 +0,0015 + 0,0018125 + 0,0013125 = 2%
5) Для пяти бумаг (РАО ЕЭС, Сбербанк, Татнефть, Газпром, гос облигации) = 0,2*0,2*0,022*0,022 + 0,2*0,2*0,011 + 0,2*0,2*0,01 + 0,2*0,2*0,024 + 0,2*0,2*0,001+ 0,2*0,2*0,0197*0,0197 + 0,2*0,2*0,011 + 0,2*0,2*0,022 + 0,2*0,2*0,029 + 0,2*0,2*0,000461+ 0,2*0,2*0,0179*0,0179 + 0,2*0,2*0,01 + 0,2*0,2*0,022 + 0,2*0,2*0,021 + 0,2*0,2*0,00065 + 0,2*0,2*0,0202*0,0202 + 0,2*0,2*0,024 + 0,2*0,2*0,029 + 0,2*0,2*0,021 + 0,2*0,2*(-0,00017) +0,2*0,2*0,0019*0,0019 + 0,2*0,2*0,001 + 0,2*0,2*0,000461 + 0,2*0,2*0,00065 + 0,2*0,2*(-0,00017) = 0,00001936 + 0,00044 + 0,0004 + 0,00096 + 0,0004 + 0,0000155236 + 0,0004 + 0,00088 + 0,00116 + 0,00001824+ 0,00128164 +0,0004+ 0,00088+ 0,00084 + 0,000026 + 0,00001632 + 0,00096 + 0,00116 + 0,00084 +-0,0000068 +0,0000001444 + 0,00004 + 0,000001844 + 0,0000026 + 0,0000068 = 1,4%
Рис 9.
Теперь посчитаем риск портфеля по модели САРМ, считая стандартное отклонение предложенным способом.
Решение. Риски бумаг со скорректированным стандартным отклонением:
1)Для одной бумаги (РАО ЕЭС) = 1,24%
2)Для двух бумаг (РАО ЕЭС, Сбербанк) = 0,5*0,5*1,24*1,24*+0,5*0,5*1,25*1,257+
2*0,5*0,5*0,011= 0,3844 + 0,390625 + 0,0055 = 0,78%
3)Для трех бумаг (РАО ЕЭС, Сбербанк, Татнефть) = 0,49%
4)Для четырех бумаг (РАО ЕЭС, Сбербанк, Татнефть, Газпром) = 0,48%
5)Для пяти бумаг (РАО ЕЭС, Сбербанк, Татнефть, Газпром, гос. облигации) = 0,3%
Рис. 10
Заключение.
Приведенный в этой работе метод корректировки стандартного отклонения приводит к сглаживанию итогового значения стандартного отклонения, поэтому скорректированное числовое значение всегда меньше нескорректированного.
Сглаженное значение ст. отклонения не содержит в себе шумов, то есть тех ошибок, которые могут исказить итоговый результат и ввести аналитика в заблуждение. Сглаженное значение ст. отклонения отражает более характерную для выбранного актива ситуацию. Оно основано на диапазоне, содержащем в себе соответствующие данному активу доли положительной и отрицательной доходности.
Применение данной корректировки, на мой взгляд, широко. Она может быть применима для любой модели, содержащей в себе стандартное отклонение.
Рассмотренный в работе пример последствия корректировки стандартного отклонения в модели САРМ говорит о том, что полученное после корректировки более низкое значение стандартного отклонения приводит к более высокому коэффициенту степени риска β и более высокому значению требуемой доходности актива.
Зависимость риска от количества бумаг в портфеле при скорректированном стандартном отклонение также выше (более ярко выражено) нежели при не скорректированном стандартном отклонении.
Список используемой литературы:
2. http://www.investpark.ru/?m=funds&an=203_standard_deviation
3. Электронный учебник-словарь. http://www.statsoft.ru
4. Электронная энциклопедия. http://ru.wikipedia.org
5. Forex Magazine по материала stockcharts.com
6. Яндиев М.И.- Финансовые рынки и корпоративные финансы.- Москва -2007, МГУ им. М.В. Ломоносова, стр.15
7. Электронная энциклопедиа
8. http://www.investpark.ru
9. http://college.biysk.secna.ru
10. www.metaquotes.ru/techanalysis/standard_deviation_channel
11. www.metaquotes.ru/techanalysis/support
12. www.metaquotes.ru/techanalysis/bollinjer
13. Яндиев М.И.- Финансовые рынки и корпоративные финансы.- Москва -2007, МГУ им. М.В. Ломоносова, стр.72
14. Яндиев М.И.- Финансовые рынки и корпоративные финансы.- Москва -2007, МГУ им. М.В. Ломоносова, стр.25
15. Яндиев М.И.- Финансовые рынки и корпоративные финансы.- Москва -2007, МГУ им. М.В. Ломоносова, стр.31
16. Яндиев М.И.- Финансовые рынки и корпоративные финансы.- Москва -2007, МГУ им. М.В. Ломоносова, стр. 72
17. Кремер Н.Ш.- Теория вероятностей и математическая статистика.- М: Юнити-Диана, 2002. – 543 с.
18. Яндиев М.И.- Финансовые рынки и корпоративные финансы.- Москва -2007, МГУ им. М.В. Ломоносова, стр. 72