. (11)
Например, допустимое значение kн в системах радиовещания не превышает нескольких процентов (kн £ 5 %), что налагает ограничения на допустимый коэффициент глубины амплитудной модуляции в передатчике. Дополнительным недостатком работы на квадратичном участке детекторной характеристики является малый коэффициент передачи, затрудняющий работу последующих усилительных каскадов.
В режиме «сильных» сигналов вольтамперная характеристика диода аппроксимируется линейной зависимостью ig=f(ug) (5). В этом случае появляется заметное напряжение смещения на анод диода из-за значительной величины U=, т.е. диод работает в режиме отсечки, и ток проходит через него только в течение тех интервалов времени, когда
. На рис. 4 показан угол отсечки θ тока диода. На интервале времени, соответствующем углу 2θ, происходит быстрый заряд конденсатора Cн (рис. 1) через открытый диод. В течение времени, когда диод закрыт, конденсатор Cн разряжается через резистор Rн.Т.о., несмотря на наличие угла отсечки, диодный детектор и в режиме «сильных» сигналов является линейным детектором и при малых значениях угла q не создает нелинейных искажений модулирующего сигнала x(t).
Нелинейные искажения при детектировании «сильных» сигналов определяются:
· нелинейностью начального участка вольтамперной характеристики диода. При этом, чтобы гарантировать работу вне существенно нелинейного участка, например, в области 0≤Uc≤Uc(1) на рис. 2, необходимо выбирать значение Uc исходя из неравенства:
; (16)
· различием сопротивлений детектора по постоянному и переменному токам.
При использовании усилителя с входным сопротивлением
RУНЧ ³ (5 – 10)Rн
и выборе величины емкости разделительного конденсатора Cp, обеспечивающей его малое сопротивление по переменному току по сравнению с RУНЧ из условия:
, (17)где Ωmin – минимальная частота модулирующего сигнала,
этим видом нелинейных искажений можно пренебречь;
· нелинейностью процесса заряда и разряда конденсатора Cн. При этом возникает фазовый сдвиг между напряжениями U= и ua(t). В моменты времени, когда ua(t) < U=, конденсатор Cн будет разряжаться через резистор Rн по экспоненциальному закону. Анализ показывает, что малый уровень нелинейных искажений этого вида обеспечивается при условии:
, (18)
где Ωmax – максимальная частота модулирующего сигнала.
Кроме рассмотренных выше нелинейных искажений в режиме детектирования «сильных» сигналов возникают частотные искажения, обусловленные присутствием в выходном напряжении гармоник высокочастотного колебания. С целью уменьшения уровня колебания высокой частоты на выходе амплитудного детектора величина емкости конденсатора Cн выбирается из условия:
, (19)
а коэффициент фильтрации в этом случае определяется выражением:
kф = ωcCнrg, (20)
где rg – сопротивление диода в открытом состоянии.
Основным преимуществом такого детектора, по сравнению с диодным, является возможность одновременного детектирования и усиления сигнала, что облегчает работу последующих каскадов. В транзисторных детекторах детектирование может выполняться за счет нелинейной вольтамперной характеристики базового, коллекторного и эмиттерного токов; причем далеко не всегда возможно создание чисто базового, коллекторного или эмиттерного детектирования и на практике используют смешанные режимы, например, коллекторно-базовый или эмиттерно-базовый режим детектирования.
Входное сопротивление Rвх и входную емкость Свх транзисторного детектора при малых и средних амплитудах входного сигнала в первом приближении находят так же, как аналогичные параметры для усилительных схем в режиме короткого замыкания на выходе. При наличии отсечки базового тока (в режиме «сильных» сигналов) входное сопротивление транзисторного детектора оказывается выше, чем у диодного.
Благодаря указанным преимуществам, в интегральных микросхемах, как правило, используются транзисторные детекторы. Примером является микросхема, состоящая из усилителя промежуточной частоты с автоматической регулировкой усиления и амплитудного транзисторного детектора.
В качестве синхронного детектора обычно используется аналоговый перемножитель сигналов. При этом на один из входов аналогового перемножителя поступает амплитудно-модулированный сигнал uc(t) (1), на другой вход – опорное когерентное колебание u0(t). В результате перемножения колебаний на выходе образуются низкочастотная составляющая 0,5ua(t)U0 и высокочастотная составляющая 0,5ua(t)U0cos(2wct), которая устраняется на выходе с помощью фильтра низкой частоты CнRн. К основным преимуществам синхронного детектора относятся:
· малые нелинейные искажения uвых(t), вследствие работы при достаточно больших напряжениях опорного колебания в режиме детектирования «сильных» сигналов;
· возможность подключения в качестве нагрузки ФНЧ с полосой прозрачности, величина которой не зависит от значений частоты Wmax модулирующего колебания;
· высокое входное и низкое выходное сопротивления, что обеспечивает хорошее согласование с соседними каскадами устройств обработки сигналов.
Однако преимущества синхронного детектирования амплитудно-модулированных сигналов реализуются лишь при точной синхронизации опорного и несущего колебаний. В реальных устройствах возможен фазовый сдвиг y между указанными колебаниями, вызванный задержкой в цепи формирования опорного колебания.
При наличии фазового сдвига y ¹ 0 амплитуда колебания на выходе синхронного детектора будет равна:
. (21)
Разлагая (21) в степенной ряд и ограничиваясь первыми членами разложения, можно получить:
.
Если входной сигнал u(t) имеет амплитудную модуляцию вида ua(t)=Uc[1+macosΩt], то полезный сигнал на выходе синхронного детектора (без учета коэффициентов усиления) имеет вид:
uвых(t)=0,5Uc[1+macosΩt]U0cosy. (22)
Из выражения (22) следует, что максимальное значения uвых(t) достигается при величине y = 2kp, что и следовало ожидать.
Качественные показатели амплитудных детекторов в значительной степени определяются уровнем амплитуды сигнала на входе детектора. Поэтому, как было показано ранее, методы расчета характеристик амплитудного детектора наиболее полно разработаны для режимов «сильных» и «слабых» сигналов.
Целью лабораторной работы является экспериментальное исследование основных характеристик и параметров амплитудных детекторов, выполненных на основе:
· диодного детектора (тип 1);
· транзисторного детектора (тип 2);
· синхронного детектора на основе аналогового перемножителя (тип 3).
Вид лицевой панели лабораторной установки приведен на рис. 5. На левом верхнем поле изображена структурная схема установки. На нижнем поле расположена панель ручного управления с переключателями режимов работы. На правом поле расположен цифробуквенный дисплей с кнопками управления.
Лабораторная установка включает в себя генератор входного сигнала и блок детекторов (рис. 5).
Генератор входного сигнала формирует амплитудно-модулированный сигнал с регулируемыми амплитудой, частотой и состоит из:
· генератора высокой частоты (ГВЧ) с частотой генерации fc = 465 кГц и регулируемой в диапазонах 0 – 0,1 В и 0,1 – 1,0 В амплитудой колебания uГ;
· генератора низкой частоты (ГНЧ) с регулируемой в пределах 30 Гц – 15 кГц частотой генерации и постоянной амплитудой колебания UM;
· модулятора, формирующего амплитудно-модулированный сигнал с постоянным коэффициентом глубины модуляции ma=30 %.
блок детекторов содержит:
· диодный детектор, к выходу которого подключены коммутируемые независимо элементы нагрузки – резисторы и конденсаторы: R1, R2, C1 и C2;
· транзисторный детектор с коммутируемыми элементами нагрузки R1, R2, C1 и C2 на выходе;
· синхронный детектор, выполненный на основе аналогового перемножителя.
Значения параметров для диодного детектора: R1 = 20 кОм, R2 = 10 кОм, C1 = 4700 пФ, C2 = 1000 пФ.
К выходам детекторов через разделительный конденсатор Cр = 0,47 мкФ подключен нагрузочный резистор R = 20 кОм.