Смекни!
smekni.com

Методические указания к лабораторной работе №4 Новосибирск (стр. 5 из 6)

И второе, важное в физических применениях, свойство – это лёгкость гальванической изоляции преобразователя напряжение‑частота. Действительно, потребляемая мощность всего несколько милливатт, малые габариты, хорошие точностные характеристики, передача выходного кода по одному проводу делают незаменимыми преобразователи напряжение‑частота в высоковольтных системах.

К высокопроизводительным АЦП с некоторой долей условности можно отнести преобразователи, производительность которых превышает 10 MSPS. Тем самым из данного типа исключаются АЦП поразрядного уравновешивания и будут рассматриваться более производительные архитектуры.

Однако, прежде чем приступить к рассмотрению высоко­производительных схем, остановимся на свойствах и некоторых особенностях элемента, присутствующего во всех обсуждаемых типах АЦП. Этот элемент – компаратор, выставляющий на выходе значения логических «0» или «1» в зависимости от разности напряжений на входах. При рассмотрении предыдущих типов АЦП интуитивно предполагалось, что компаратор выполняет эту функцию мгновенно. Такой подход был вполне оправдан, поскольку в рассмотренных выше АЦП существенными являются быстродействие элементов, определяющих точность ЦАПов, ключей, усилителей и только в последнюю очередь компаратора. В высокопроизводительных схемах быстродействие компаратора должно учитываться, так как его динамические характеристики оказывают определяющее влияние на параметры преобразователя.

Вначале остановимся на простейших функциях и свойствах компаратора. Компаратор представляет собой усилитель с дифференциальным входом, большим коэффициентом усиления, позволяющим достигнуть высокой разрешающей способности, и формирователем выходных уровней. Если сигнал на входе ниже порога Vref, выход принимает значение «0», если выше – то «1», поэтому компаратор является аналого-цифровым преобразователем с разрядностью 1 бит.

Так как от компаратора требуется и большой коэффициент, и высокое быстродействие, к чему стремятся разработчики, схема становится неустойчивой в линейном режиме, т. е. при значениях сигнала, близких к порогу Vref или равных ему.

Первый способ преодоления проблемы – введение небольшой положительной обратной связи, т. е. гистерезиса. Этот приём широко распространён, однако он не позволяет достигнуть предельной, по сравнению с шумами, разрешающей способности, поскольку последняя не может превышать величины гистерезиса.

Рис. П6. Структурная схема параллельного 3-битового АЦП

Второй способ – снижение коэффициента усиления до уровня устойчивой работы и включение полной (100 %) положительной обратной связи через некоторое время после начала сравнения. Такой приём был предложен в 1972 г. сотрудником фирмы AMD Джеймсом Джайлсом и положен в основу широко известного компаратора АМ685 [3]. Именно таким образом выполняется большинство современных быстродействующих, точных компараторов, получивших название «компаратор-защёлка» (latched comparators), или стробируемый компаратор.

Такие компараторы применяются в одном из наиболее быстродействующих преобразователей – параллельных АЦП (Flash ADC). Рассмотрим структурную схему параллельного 3-битового АЦП, показанную на рис. П6.

Входной сигнал подаётся параллельно на все компараторы, а опорные напряжения разнесены друг от друга на величину младшего разряда с помощью лестничного делителя. Значения выходов компараторов образуют так называемый «термометрический» код, который затем преобразуется в двоичный. Для получения N‑разрядного кода необходимо 2N-1 компараторов.

Для построения, например, 8-битового АЦП, на кристалле приходится размещать 255 компараторов. Как следствие, появляется большая входная ёмкость, затрудняющая разработку входных широкополосных цепей, а также резко увеличивается рассеиваемая мощность, так как быстродействующие компараторы потребляют заметный ток. В этой связи типовая разрядность параллельных АЦП не превышает 8, но зато быстродействие такого преобразователя достигает 1 GSPS (MAX-104: 1 GSPS, 8 bit) [9].

Параллельные аналого-цифровые преобразователи стали фундаментом для двух современных высокопроизводительных архитектур: конвейерных параллельно-последовательных схем (Pipeline ADCs), ориентированных на получение 12–14–16 бит при сохранении высокого быстродействия, и схем с аналоговой свёрткой сигнала (Folding ADCs), нацеленных на сверхбыстродействие (более 1GSPS) при разрядности 6–8–10 бит.

Появление конвейерного АЦП было вызвано тем, что практическая реализация высокопроизводительных параллельных АЦП с разрядностью более 6–8 вызывала значительные затруднения вследствие серьёзных аппаратных затрат, приводящих к большой рассеиваемой мощности. На начальных этапах разработки, когда не было интегральных компараторов, эти проблемы заставили искать более экономичные схемы, которые позволили бы увеличить разрядность, сохраняя высокое быстродействие, присущее параллельным АЦП. Принцип построения такого преобразователя продемонстрирован на рис. П7.

Рис. П7. Архитектура конвейерного (параллельно-последовательного) АЦП

Выборка сигнала запоминается в устройстве выборки-хранения (УВХ) и с помощью АЦП первой секции (АЦП 1), имеющего разрядность N1, преобразуется в код. Далее этот код вновь преобразуется в напряжение, представляющее уже грубое приближение к сигналу (ЦАП 1), которое вычитается из точного значения последнего, запомненного в УВХ. Полученная разность усиливается и перезапоминается во втором УВХ и преобразуется в N 2-разрядный код преобразователем второй секции. Результирующий отсчёт имеет разрядность N1 + N2 и образуется в выходном регистре. Примечательно, что, имея две четырёхразрядные секции (по 15 компараторов), можно получить 8-разрядный код (сравните с 255 компараторами в полностью параллельном АЦП).

После перехода второго УВХ в режим хранения для «оцифровки» разницы первая секция вновь переводится в режим выборки следующей «порции» сигнала и преобразования в код. Таким образом, обе секции загружены одновременно и поочерёдно преобразуют сигнал, в результате чего скорость выдачи данных на выходе определяется только быстродействием одной секции. Необходимо подчеркнуть, что для полного преобразования в код одной выборки сигнала необходимо по-прежнему два такта работы. С появлением этой схемы параметр «время преобразования» стал неточно отражать скоростные возможности АЦП и появилась вторая характеристика – «производительность». Для многих приложений, как, например, цифровое телевидение и радио, цифровая осциллография, приборостроение, такая «конвейеризация» обработки вполне допустима. Эти АЦП, получившие название Pipelined ADCs, или в русском переводе – конвейерные АЦП,  строятся,  как правило, из нескольких секций. Для 12–14‑разрядных моделей производительность достигает 300 MSPS [10].

Кроме конвейерных АЦП, позволяющих оптимизировать соотношение производительность/разрядность, в 1956 г. было предложено ещё одно решение, базирующееся на параллельном АЦП [6]. Преобразователи, использующие предложенный принцип, называются «Folding ADCs», или в русском переводе АЦП с аналоговой свёрткой сигнала. Эта архитектура направлена на получение сверхвысокого быстродействия при разрядности 6–8–10 бит за счёт целого набора найденных оригинальных решений, применяемых в этих преобразователях.

В 2007 г. фирма e2V анонсировала обладающую впечатляющими параметрами серию интегральных АЦП, использующих аналоговую свёртку сигнала. Образцы достигают производительности 2 GSPS при разрядности 10 бит. Кристаллы выполнены по npn-технологии, рассеивают 4,5 Вт и стоили на момент выпуска около $ 5000/шт. [11]. Близкие по параметрам, хотя и не столь яркие, разработки (ADC081000: 8 бит, 1 GSPS, $ 2400) сделаны фирмой National Semiconductor [12].

Рекордной производительностью до 40 GSPS обладают специализированные, не предназначенные для продажи микросхемы, которые приборостроительные фирмы изготавливают для применения в разрабатываемой аппаратуре. Показательные примеры можно найти в [7].

Рис. П8. Модифицированная схема Δ-модулятора, содержащая интегратор в цепи ошибки

Архитектура ΣΔ–АЦП в том виде, в котором она существует в на­стоящее время, сформировалась к 1970 г., претерпевая изменения бо­лее 20 лет. Начало было положено в 1946 г. инженерами французского отде­ления ITT, предложившим так называемый Δ‑модулятор. Побуди­тельной причиной создания Δ-модулятора было желание увеличить пропускную способ­ность линий связи за счёт пере­дачи не пол­ных циф­ровых отсчё­тов, а только их измене­ния. Анализ работы Δ-модулятора показал, что для уверенного кодиро­вания относительно низкочастот­ных сигна­лов необходима очень высокая тактовая час­тота в устрой­стве. Эта осо­бенность не позво­лила сис­темам с Δ-модулятором достиг­нуть практических успехов. В то же время теоретические аспекты уст­ройств, использующих тактиро­вание с часто­той, много выше, чем частоты сигнала (так называемая передискре­тизация, или oversampling в ориги­нальной транскрипции), привлекли внимание и стали предметом иссле­дований. Вскоре был предложен модифици­рованный вариант Δ-модулятора (рис. П8.).