Смекни!
smekni.com

Методические указания к выполнению лабораторных работ по курсу «Микроэлектроника» Москва 2006 (стр. 2 из 3)

Рис.13 Типичный вид выходных Рис.14 Типичный вид выходных

характеристик ТТЛ-ключа характеристик ЭСЛ-ключа

при различных логических при различных логических

состояниях на выходе состояниях на выходе

Найденные параметры ключа вх , вх, вых и вых используются затем для оценки коэффициента разветвления по выходу Краз. Этот параметр определяет число единичных нагрузок – аналогичных ключей, которое можно одновременно подключить к выходу ключа; Краз есть меньший из двух коэффициентов разветвления

Важно знать, какую мощность потребляет исследуемая схема. Различаются

и
- соответственно потребляемые схемой мощности в состоянии логической единицы и логического нуля. Они оцениваются через измеряемые в цепях источников питания токи (рис. 15) в соответствующих состояния ключа
и
напряжения источников питания
:

Здесь К – количество источников питания в схеме ключа.

Рис.15 Схема оценки потребляемого ключом тока

от источника питания

В качестве параметра ключа используется также и средняя потребляемая мощность от источников питания

. Динамические свойства ключа (его быстродействие) оцениваются обычно по переходной (амплитудно-временной) характеристике. Для этого (рис. 16) на один вход схемы подают импульсный сигнал (при получении переходной характеристики – это идеальный прямоугольный импульс), все другие входы объединяют и подают на них уровень напряжения, который отключает эти (для ТТЛ-ключа высокий уровень напряжения, а для ЭСЛ-ключа - низкий). На выход схемы присоединяется нагрузка в соответствии с найденным Краз. На экране осциллографа, работающего в режиме внешней синхронизации, наблюдают входной и выходной сигналы ключа. Используемые для оценки быстродействия ключа параметры и методика их получения отображены на рис. 17.

Рис.16 Схема оценки временных

параметров ключа

Однако подчас затруднительно поставить этот эксперимент (особенно при высоком быстродействии элемента). Тогда прибегают к упрощенной оценке быстродействия исследуемого ключа, используя при этом параметр tзд.р.ср – среднее время задержки распространения сигнала; как интервал времени оно равно полусумме задержки распространения сигнала при выключении tº΄¹зд.р и включении t¹´ºзд.р ключа.

Для оценки tзд.р.ср. собирают цепочку из нечетного числа исследуемых инвертирующих схем и закольцовывают её (рис. 18).

В цепи начинают циркулировать перепады напряжения, период следования которых определяется общей задержкой цепи для положительного и отрицательного перепадов напряжения. Присоединяя осциллограф к выходу любого из закольцованных ключей и оценивая период колебаний в цепи Т , вычисляют среднюю задержку распространения сигнала для одного элемента tзд.р.ср.=0.5Т/n, где n – число элементов (ключей) в кольце.

Рис.18 Схема оценки средней задержки распространения

сигнала в ключе

Р а б о т а № 5. ТРАНЗИСТОРНО-ТРАНЗИСТОРНЫЙ КЛЮЧ

Цель работы – получение и исследование основных электрических характеристик и параметров транзисторно-транзисторного ключа.

Обычно во входной цепи таких ключей применяются многоэмиттерные транзисторы, что позволяет иметь у микросхемы несколько равноценных входов (до восьми) и реализовать на её основе логическую функцию И-НЕ. Закон функционирования элемента с двумя входами х1 , х2 и одним инверсным выходом y отображается уравнением y =

.

По этой причине рассматриваемые ключи называются транзисторно-транзисторными логическими элементами (ТТЛ-элементами). В свою очередь, более сложные логические элементы серии строятся на основе простейших ТТЛ-ключей.

На рис. 19 показана принципиальная схема ТТЛ-ключа с двумя входами. Логическая операция И реализуется с помощью двухэмиттерного транзистора VT1 и резистора R1, а операция НЕ – на оставшихся транзисторах VT2-VT5, диоде VD1 и резисторах R2R5, на которых построен сложный инвертор.

Рассмотрим особенности работы такого ключа. Если хотя бы на одном из входов схемы имеется низкий уровень напряжения (логический нуль) , то соответствующий эмиттерный переход многоэмиттерного транзистора VT1 откроется. Поскольку в этой ситуации втекающий в коллектор транзистора VT1 ток ограничен на уровне Iко транзистора VT2, то многоэмиттерный транзистор VT1 насыщается и его остаточное напряжение Uк.э.н1

составляет при этом не более 0,3В. Потенциал базы VT2, равный вх +Uк.э.н1 , недостаточен для открывания двух последовательно включенных эмиттерных переходов транзисторов VT2 и VT5 , а вместе с ними заперт и транзистор VT3.

В свою очередь, транзистор VT4 и диод VD1 открыты за счет подключения базы VT4 через резистор R2 к положительному полюсу источника питания. При этом на выходе схемы возникает высокий уровень напряжения Vвых=Еn-Iб4R2-Uбэ4-Uак1, достигающий значения 3,6…4,2 В (на открытом эмиттерном переходе транзистора падает напряжение от 0,65 до 0,75 В, а ток в цепи базы VT4 незначителен).

Рис. 19. Принципиальная электрическая схема ТТЛ-ключа.

Если на всех входах ключа одновременно присутствует высокий уровень напряжения (логическая единица), то эмиттерные переходы транзистора VT1 заперты, его коллекторный переход отпирается и связывает последовательно включенные эмиттерные переходы транзисторов VT2 и VT5 через резистор R1 с источником питания схемы. В результате этого транзисторы VT2 и VT5 отпираются до насыщения и выходное напряжение, равное Uк.э.5 , падает до несколько десятых долей вольта (имеем низкий уровень напряжения на выходе схемы, соответствующий логическому нулю). Понижению уровня выходного напряжения способствует запирание транзистора VT4 и диода VD1 , возникающее вследствие недостаточной разности потенциалов между базой VT4 и коллектором VT5 . Эта разность потенциалов образуется из Uк.э.н2~0.3В и Uб.к.н5~0.7В, т.е. приблизительно 1,0В, что недостаточно для отпирания последовательно соединенных эмиттерного перехода транзистора VT4 и диода VD1 .

Цепочка из VT3, R3 и R4 препятствует глубокому насыщению транзистора VT5 после его отпирания за счет отбора части базового тока VT5. Кроме того, транзистор VT3 при выключении транзистора VT5, оставаясь дольше него в насыщении, обеспечивает быстрое удаление избыточного заряда неосновных носителей из области базы. В схеме ТТЛ-ключа каскад на транзисторе VT2 – фазорасщепляющий усилитель, который обеспечивает получение парафазного сигнала для управления транзисторами VT4 и VT5 . Одновременно с этим эмиттерный переход транзистора VT2 выполняет роль “диода” смещения, увеличивая порог переключения схемы и повышая её помехоустойчивость.

Резистор R5 ограничивает ток в цепи транзисторов VT4 , VT5 и диода VD1 при выключении схемы, когда транзистор VT5 ещё не вышел из насыщения, а транзистор VT4 уже открылся.

При включении ключа коллекторный ток транзистора VT5 обеспечивает быстрый разряд емкости в выходной цепи ключа, благодаря чему отрицательный перепад напряжения на выходе имеет малую длительность. При выключении ключа транзистор VT5 запирается, а VT4 отпирается и работает в активном режиме. Эмиттерный ток транзистора VT4 обеспечивает быстрый заряд емкостей на выходе схемы, благодаря чему положительный перепад напряжения на выходе получается коротким. Таким образом, сложный выходной каскад обеспечивает малое время срабатывания ключа даже при значительных емкостных нагрузках.