Смекни!
smekni.com

Методические указания по выполнению лабораторных работ для студентов высших учебных заведений по специальности 230101. 65 «Вычислительные машины, системы, комплексы и сети» (стр. 2 из 11)

1.1.3.2 Допустимые значения фронта спада сигнала

Для микросхем серии К155 длительность фронта не должна превышать 150 нс (для ИС 155 ЛА8 длительность фронта и спада критична).

1.1.3.3 Обеспечение коэффициентов разветвления

Для обеспечения работоспособности логических микросхем друг от друга при условии сохранения их параметров, оговоренных в ТУ, необходимо выполнять следующие требования:

- выходные напряжения микросхем-генераторов в открытом и закрытом состояниях должны соответствовать входным напряжениям закрытого и открытого состояния микросхемы - нагрузки с учётом величины напряжения помехи,

- значение суммарных токов всех микросхем-нагрузок, подключённых к выходу микросхемы-генератора, не должно превышать значений выходных токов микросхемы-генератора в открытом и закрытом состояниях,

- значение суммарных ёмкостей входов микросхем-нагрузок, при которых регламентируются временные параметры, не превышает 15 пФ. При необходимости суммарная ёмкость нагрузки ИС-генератора с учётом ёмкости монтажа может достигать максимальной ёмкости нагрузки 200 пФ, но динамические параметры при этом не регламентируются.

Примечание. При объединении нескольких входов одного логического элемента, принадлежащих одному многоэмиттерному транзистору, ток I0вх остаётся неизменным, ток I1вх увеличивается пропорционально числу объединяемых входов.

1.1.3.4 Нумерация выводов микросхем

Микросхемы 155-й серии, применяемые в данном лабораторном практикуме, могут иметь 14 или 16 выводов. Нумерация выводов показана на рис. 1.6.

Устройство, преобразующее дискретную информацию, в общем случае имеет n-входов и k-выходов, на которые подаются и с которых снимаются электрические сигналы. Каждый из них представляет собой некоторый символ (букву) входного и выходного алфавита. Устройства, в которых совокупность выходных сигналов (выходное слово Y) в некоторый момент времени t, однозначно определяется входными сигналами (входным словом X), поступившими на входы в тот же момент времени, называются комбинационными схемами. В них результат обработки информации зависит только от комбинации входных сигналов и вырабатывается сразу при подаче входной информации.

Закон функционирования комбинационной схемы (КС) определён, если задано соответствие между словами ее входного и выходного алфавитов, что может быть осуществлено либо в виде таблицы, либо в аналитической форме, с использованием булевых функций. Таким образом, комбинационная схема, выполняющая соответствующее некоторой булевой функции преобразование информации, является её техническим аналогом. КС, реализующая элементарную логическую операцию, носит название логического элемента, причём число его входов соответствует числу аргументов воспроизводимой им булевой функции.

В состав элементов ТТЛ 155-й серии входит ряд элементов малой степени интеграции, выполняющих элементарные логические операции.

Базовым элементом, т.е. таким, посредством которого могут быть реализованы все остальные логические операции, является элемент И-НЕ. Технология производства позволяет число входов данного элемента варьировать от 2 до 8, при этом, в зависимости от данного числа, наименование элемента будет: 2И-НЕ, ЗИ-НЕ, 4И-НЕ, 8И-НЕ. Элементы с числом входов 5, 6, 7 - не изготавливаются. Схема базового элемента показана на рис. 1.7.

Основной его особенностью является использование многоэмиттерного транзистора, специфичного для интегрального исполнения логических элементов. При подаче на все его эмиттеры, выполняющие роль входов логического элемента, сигнала высокого уровня, ток коллектора смещается в прямом направлении и возникает ток базы транзистора VT2. За счёт падения напряжений на резисторах R2 и R3 транзистор VT3 закрывается, VT4 - открыт, при этом напряжение на выходе не превышает 0,4 В. При подаче сигнала низкого уровня хотя бы на один вход - картина противоположная: транзисторы VT2 и VT4 закрываются, а VT3 - открыт. На выходе элемента устанавливается потенциал более 2,4В. Выходной каскад подобного вида иногда называется столбовым. Некоторым недостатком подобного принципа построения выходного каскада является невозможность создания "монтажной функции" путём соединения выходов определённых элементов. Указанное ограничение снимается при использовании микросхем с "открытым коллектором" (рис. 1.8).

Отсутствие транзистора, сходного по функции с VT3 согласно рис. 1.7, компенсируется наличием нагрузочного резистора Rн, за счёт которого при закрытом транзисторе VT3 на входах элементов, подключённых к данному, устанавливается единичный потенциал. Подключение к точке А выходов однотипных элементов, транзисторы VT3 которых закрыты, не изменяет состояние. Если же хотя бы один из указанных транзисторов открыт, в точке А устанавливается низкий потенциал.

Очевидно, что таблица истинности для данного типа микросхем будет включать одну строку, соответствующую случаю, когда на все входы поданы логические единицы, с нулём в графе выхода. В остальных 2N-1 случаях (где N - число входов) на выходе будет сохраняться высокий уровень.

1.2 Порядок выполнения работы

1. Ознакомиться с установкой УМ11. Разобраться с назначением всех гнёзд, имеющихся на наборном поле установки.

2. Экспериментальным путём получить таблицы истинности для следующих элементов:

2-И-НЕ,

3-И-НЕ,

4-И-НЕ,

2И-2ИЛИ-НЕ.

В отчёте для каждого элемента должно быть приведено его название, математическое представление реализуемой функции, графическое обозначение и таблица истинности.

3. Построить на основе элементов "2-И-НЕ" схему, реализующую функцию элемента "НЕ". Привести 2 различные схемы, их математические модели и графическое изображение.

4. Построить на основе элементов "2-И-НЕ" схему, реализующую функцию элемента "ИЛИ". Привести математическое описание работы схемы и её графическое изображение.

5. Построить на основе элементов "2-И-НЕ" схему, реализующую функцию элемента "И". Привести математическое описание работы схемы и её графическое изображение.

6. Построить на основе элементов "2-И-НЕ" схему, реализующую функцию, указанную преподавателем.

7. Определить свой вариант переключательной функции. Для этого необходимо номер варианта перевести в двоичную систему счисления и записать шесть его младших разрядов в виде слова α6 α5 α4 α3 α2 α1. Определив значение αi, записать их в табл. 1.2.

Например, если номер варианта 19 (010011), то α6=0, α5=1, α4=0, α3=0, α2=1, α1=1.

Для заданной функции и ее отрицания найти МДНФ. Представить функцию в форме И-НЕ.

Построить указанную схему, учитывая, что на входы могут подаваться с помощью тумблеров прямые и инверсные значения переменных.

Таблица 1.2

X4

X3

X2

X1

y

0

0

0

0

1

0

0

0

1

0

0

0

1

0

α1

0

0

1

1

1

0

1

0

0

α2

0

1

0

1

1

0

1

1

0

0

0

1

1

1

0

1

0

0

0

α3

1

0

0

1

α4

1

0

1

0

1

1

0

1

1

0

1

1

0

0

0

1

1

0

1

1

1

1

1

0

α5

1

1

1

1

α6

1.3 Вопросы для самостоятельной работы

1. Системы логических элементов (серии, комплексы), основные параметры системы логических элементов, значения основных параметров для логических элементов серии 155.