4.1. Для собственного (чистого) полупроводника
Для собственного (чистого или идеального) полупроводника равновесные концентрации электронов и дырок ni=pi определяются выражением
, (1)В выражении (1) ΔW =
– ширина запрещенной зоны полупроводника, и - «дно» зоны проводимости и «потолок» валентной зоны соответственно,k – постоянная Больцмана, равная k=1,3805*10-23 Дж/0К,
Т – абсолютная температура в градусах Кельвина (T=t + 2730К),
N – среднее геометрическое значение эффективных плотностей энергетических состояний в зоне проводимости
и валентной зоне , т.е. плотность разрешенных уровней энергии (которые могут занимать электроны). Их численные значения определяются выражениями , , (2) . (3)В выражениях (2) и (3)
и - эффективные массы соответственно электрона и дырки, определяемые по данным табл. 2,h – постоянная Планка, h=6,6262*10-34 Дж*с.
Уровень Ферми в собственном полупроводнике находится в середине запрещённой зоны и определяется выражением
, (4)В выражении (4) WE – так называемый электростатический уровень (т.е. уровень, соответствующий середине ширины запрещённой зоны).
4.2. Для примесных полупроводников
В случае примесных полупроводников концентрации подвижных носителей зарядов n и p определяются известным соотношением концентраций подвижных носителей зарядов
. (5)В рабочем диапазоне температур практически все атомы примеси оказываются ионизированными, поэтому с учётом того, что на практике концентрации примесей выбираются из условий Nd >>ni , и Na>>рi , для концентраций основных носителей зарядов полупроводников n и p типов с весьма высокой степенью приближения соответственно выполняются условия
nn ≈ Nd и pp ≈ Na .
Уровни Ферми в примесных полупроводниках определяются выражениями
, (7) . (8)В выражениях (7) и (8) WFn – уровень Ферми в электронном полупроводнике, WFp – уровень Ферми в дырочном полупроводнике, Nd – концентрация донорной примеси, Na – концентрация акцепторной примеси.
Сравнение выражений (4), (7) и (8) показывает, что уровни Ферми собственного и примесных полупроводников неодинаковы. Иначе говоря, между ними существует следующее соотношение
WFn>WFi>WFp . (9)
4.3. Для электронно-дырочного (p-n) перехода
При образовании двухслойных контактов (переходов) p-i, i-n или p-n между полупроводниками, образующими их, в результате перераспределения подвижных носителей зарядов происходит выравнивание уровней Ферми, т.е. в каждом случае формируется уровень Ферми единый для всего контакта. В результате на границе раздела в контактах происходит деформация энергетических зон и образование энергетического и потенциального барьеров (контактной разности потенциалов). Их величины и знаки можно определить с учётом (4) и (7…9).
В случае электронно-дырочного перехода энергетический барьер определится в виде
. (10)В выражении (10) Wcp и Wcn , – границы между зонами проводимости («дно» зон проводимости) и запрещённой зоной областей p и n электронно-дырочного перехода, а Wvp и Wvn – границы между валентными зонами («потолок» валентных зон) и запрещённой зоной областей p и n.
Высота потенциального барьера (контактная разность потенциалов) в идеальном электронно-дырочном переходе в состоянии равновесия и отсутствии внешнего напряжения равна
. (11)В выражении (11) e – заряд электрона, e=1,6022*10-19 Кл (без учёта знака).
Ширина идеального электронно-дырочного перехода в состоянии равновесия δ0 определяется выражением (12)
, (12)где
– абсолютная диэлектрическая проницаемость полупроводника,ε0 – универсальная физическая постоянная (или диэлектрическая проницаемость вакуума), равная ε0 =0,885*10-13 Ф/м ,
ε –относительная диэлектрическая проницаемость полупроводника, определяемая из табл.2.
4.4. Для p-n перехода, смещённого внешним напряжением U
При подаче внешнего напряжения высота потенциального барьера в идеальном p-n переходе становится равной φ = φk – U, (обратное напряжение берется со знаком –).
Смещение уровня Ферми в пределах p-n перехода определится выражением (15)
. (15)Равновесное состояние p-n перехода нарушается и через него преимущественно протекают либо диффузионные потоки основных зарядов (при U>0), либо дрейфовые потоки неосновных зарядов (при U<0).
5. Методические указания к выполнению работы
5.1. При выполнении расчётов следует учитывать, что параметры полупроводников приведены в табл. 2 для температуры Т=3000К. Поэтому при расчёте равновесных концентраций собственного полупроводника по формуле (1) необходимо учитывать температурные зависимости эффективных плотностей N, Nc и Nv , пользуясь выражениями (2,3,4), а также температурную зависимость ширины запрещённой зоны ΔW.
5.2. Ширину запрещённой зоны ΔW для германия при температурах выше 2000К можно определить по эмпирической зависимости ΔW=0,782 – 3,9·10-4 ·Т (эВ).
5.3. Для ширины запрещённой зоны кремния при температурах выше справедливо аналогичное соотношение ΔW=1,205 – 2,84·10-4 ·Т (эВ).
5.4. Вычисленные по п.п. 5.2 и 5.3 значения ΔW при подстановке в формулу (1) следует из эВ перевести в джоули, умножив их на заряд электрона е.
5.5. При вычислении уровней Ферми и построении энергетических диаграмм электронного и дырочного полупроводников, а также электронно-дырочного перехода необходимо в каждом случае их отсчёт производить не от уровня W=0, а от нижнего уровня зоны проводимости Wc каждой (n или p) областей полупроводника. Тогда выражения (4), (7) и (8) преобразуются соответственно к виду
, (41 ) , (71 ) . (81 )5.6. При построении энергетических (зонных) диаграмм рекомендуется для всех энергетических уровней использовать единицу измерения – эВ.