Смекни!
smekni.com

Дарья. Шестак О. Н. 2010 г. Абай Содержание. Введение. Основное (стр. 1 из 3)

Теорема Пифагора.

Выполнили:

ученицы 7«Б» класса

школы – лицей №14

Пахалюк Светлана

Челнокова Дарья.

Руководитель:

Шестак О.Н.

2010 г. Абай

Содержание.

1. Введение.

2.Основное содержание

· теорема Пифагора

· историческая справка

· решение уравнения второй степени с тремя неизвестными.

· Задачи.

3.Великие тайны теоремы.

4. Вывод.

5. Литература.

Введение.

Цель: поиск решений квадратных уравнений с тремя неизвестными.

Задачи:

1. Рассмотреть теорему Пифагора как источник замечательных математических открытий.

2. Использовать полученные знания на уроках алгебры и геометрии.

3. Найти решения уравнения с тремя неизвестными

«Геометрия владеет двумя

сокровищами: одно из них

– это теорема Пифагора»

Иоганн Кеплер

Теорема Пифагора!

Без преувеличения можно сказать, что это самая известная теорема геометрии, ибо о ней знает подавляющее большинство населения планеты, хотя доказать ее способна лишь очень незначительная его часть.

В чём же причина такой популярности «Пифагоровых штанов»? Знатоки утверждают, что причин здесь три:

1.Простота

2. Значимость

3.Красота

Формулировки теоремы Пифагора различны. Общепризнанной считается следующая: «В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».

Во времена Пифагора формулировка теоремы звучала так: «Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах».

Теорему можно сформулировать и по-другому:

Если дан нам треугольник

И притом с прямым углом,

То квадрат гипотенузы

Мы всегда легко найдем:

Катеты в квадрат возводим,

Сумму степеней находим —

И таким простым путем

К результату мы придем.

Доказательство теоремы считалось в кругах учащихся средних веков очень трудным и называлось:

“Dons asinorum” - «ослиный мост» или “elefuga” - «бегство убогих»

а сама теорема – «ветряной мельницей», «теоремой – бабочкой» или «теоремой невесты»

Сейчас известно около 150 различных доказательств этой теоремы

(геометрических, алгебраических, механических и т.д.)

- У Евклида эта теорема гласит (дословный перевод): "В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол".

- Латинский перевод арабского текста Аннаирици (около 900 г. до н. э. ), сделанный Герхардом Клемонским (начало XII в.), в переводе на русский гласит: "Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол".

- В Geometria Culmonensis (около 1400 г.) в переводе теорема читается так : "Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу".

- В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: "В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол".

- Более строгой надо считать такую формулировку: «Если гипотенуза и катеты прямоугольного треугольника измерены одной и той же единицей длины, то квадрат числового значения длины гипотенузы равен сумме квадратов числовых значений длин катетов».

- Доказательства, основанные на использовании понятия равновеликости фигур

- Аддитивные доказательства (основаны на разложении квадратов, построенных на катетах, на фигуры, из которых можно сложить квадрат, построенный на гипотенузе

- Доказательства методом достроения

- Алгебраический метод доказательства

- И т.д.

Среди многочисленных доказательств теоремы Пифагора методом разложения есть и два таких, что их с полным правом можно назвать шедеврами, настолько они красивы и просты до гениальности. Первое (рис.1) принадлежит иранскому математику ан-Найризи (конец IX - начало Х века), комментатору Евклида, а второе (рис.2) — лондонскому биржевому маклеру и астроному-любителю Генри Перигэлу, опубликовавшему его в 1873 году. На этих рисунках тоже все настолько ясно, что указание Бхаскары и здесь остается в силе.


Не подлежит, однако, сомнению, что эту теорему знали за много лет до Пифагора. Так, за 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4 и 5 является прямоугольным, и пользовались этим свойством (т. е. теоремой, обратной теореме Пифагора) для построения прямых углов при планировке земельных участков и сооружений зданий.

Да и поныне сельские строители, и плотники, закладывая фундамент избы, изготовляя ее детали, вычерчивают этот треугольник, чтобы получить прямой угол. Это же самое проделывалось тысячи лет назад при строительстве великолепных храмов в Египте, Вавилоне, Китае, вероятно, и в Мексике.

Как свидетельствуют летописи, в Древнем Китае уже около 2200 года до н.э. для треугольника со сторонами 3, 4, 5 было найдено правило «гоу-гу», с помощью которого можно было по известным гипотенузе и одному из катетов находить другой неизвестный катет, а также гипотенузу, если известны оба катета.

В самом древнем индийском геометрическом сборнике «Сульвасутра» («Правила веревки», 600 год до н.э.), представляющем собой своеобразную инструкцию по сооружению алтарей в храмах, даются правила построения прямых углов при помощи веревки с узлами, расстояния между которыми равны 15, 36 и 39 падас (мера длины). Алтари по священному предписанию должны иметь строгую геометрическую форму, ориентированную относительно четырех сторон горизонта.


4 5

3

В Древнем Вавилоне это свойство не только треугольника со сторонами 3, 4, 5, но и вообще всех прямоугольных треугольников было хорошо известно. Так, в одном из самых ранних вавилонских математических текстов содержится следующая изящная задача:


«Палка длиной 1/2, прислонена

к стене. Ее верхний конец

опустили на 1/10. Как далеко

отодвинется ее нижний конец?»

Решение.

В задаче, как видим, по данным гипотенузе c = 1/2 и одному из катетов

b = 1/2 - 1/10 = 2/5 необходимо найти второй катет. Его, как и положено, вавилонянин определяет «по Пифагору»:

Большая часть доказательств теоремы Пифагора выполнена геометрическими методами, среди которых значительное место занимает метод разложения. Сущность метода разложения заключается в том, что квадрат, построенный на гипотенузе, с одной стороны, и квадраты, построенные на катетах, с другой, складываются из равных частей. Простейший пример применения этого метода имеем при доказательстве теоремы Пифагора для равнобедренного прямоугольного треугольника (см. рис.). Из этого рисунка все так понятно, что комментировать его не требуется. Как писал в подобных случаях индийский математик XII века Бхаскара: «Смотри!»

Историческая справка.

Кто и когда придумал первое уравнение? Ответить на этот вопрос не возможно. Задачи, сводящиеся к простейшим уравнениям ,люди решали на основе здравого смысла с того времени, как они стали людьми.

Еще древние египтяне для удобства рассуждений придумали специальное слово, обозначающее неизвестное число, но так как у них не было еще знаков равенства и знаков действий, то записывать уравнения они, конечно не умели.

Первый по-настоящему серьезный шаг в этом направлении сделал замечательный александрийский ученый Диофант, использовавший в своем творчестве достижения египтян, вавилонян и греков. Именно Диофант придумал обозначения для неизвестных. Жил Диофант, по-видимому, в 3 веке нашей эры, остальные известные нам факты его биографии исчерпываются таким стихотворением – загадкой, по преданию выгравированным на его надгробии: