Реакцию можно ускорить введением специальных катализаторов. При этом кинетика реакции должна быть такой, чтобы рост полимерных молекул и выделение газообразных продуктов обеспечивали образование прочной пены. Для стабилизации пены в композиции вводят эмульгаторы.
Плотность пенополиуретанов в основном зависит от соотношения количеств полиизоцианатов и полиэфиров, а также от количества вспенивающего агента.
Пенополиуретаны на простых полиэфирах по упругой деформации условно делятся на жесткие ППУ (напряжение сжатия при 50%-ной деформации более 0.1 5 MПa), интегральные (напряжением сжатия 0,15...0.01 MПa) и эластичные (напряжением сжатия менее 0,01 MПa).
Средняя молекулярная масса структурной единицы жесткого пенополиуретана 400.. .700. Жесткие пенополиуретаны на простых полиэфирах обладают высокой механической прочностью при небольшой массе, водостойкостью и стойкостью к действию растворителей.
При производстве мебели во многих высокоразвитых зарубежных странах применяют различные виды жесткого пенополиуретана - простые и структурированные (интегральные) для изготовления декоративных элементов, имитирующих резьбу по древесине, фасадных и других деталей мебели, каркасов кресел и диванов. В России жесткий пенополиуретан используют в настоящее время лишь для производства конструкционных деталей мягкой мебели и декоративных элементов, имитирующих резьбу по древесине.
Жесткие ППУ получают из двух жидких компонентов: А и Б, только другого состава. Компонент А содержит простые полиэфиры, катализатор, эмульгатор, вспенивающий агент. Последний поставляется отдельно и добавляется в компонент А непосредственно на производстве, что позволяет на месте изготавливать компонент с заданной способностью к вспениванию и соответственно обеспечивать наиболее рациональное использование сырья и получение материала требуемых физико-механических свойств. Компонент Б - полиизоционат.
В зависимости от исходных компонентов, рецептурного состава и параметров технологического процесса получают жесткий ППУ с различными кажущейся плотностью и физико-механическими показателями.
Следует различать кажущуюся плотность материала при свободном вспенивании и кажущуюся плотность при формировании в закрытой форме. Кажущаяся плотность при свободном вспенивании значительно ниже и соответствует минимально возможной плотности данного материала, тогда как плотность при формировании может изменяться в значительных пределах и зависит не только от состава и соотношения основных компонентов, но и от содержания вспенивающего агента, степени заполнения пресс-формы и других факторов. Для различных марок жесткого ППУ кажущаяся плотность формированных деталей может быть в пределах 30...700 кг/куб.см.
В таблице 1 приведены показатели физико-механических свойств некоторых марок жесткого ППУ отечественного и зарубежного производства.
Таблица I. Показатели основных свойств жесткого пенополиуретана
Отечественного ПроизводствоПоказатель производства Германии
1ШУ-3 Ш1У-ЗО5Л ППУ-ЗС SH-4031 S.H-4032 Кажущаяся плотность, кг/куб.см 140 100 50 45 37Предел прочности при сжатии 1,4 0.8 2,0 0,38 0.26
в направлении вспенивания, MПa
Ударная вязкость кДж/кв.м. I ,0 - 0.6
не менее
Прочность пенополиуретанов больше в направлении подъема пены. Особенно ярко это выражено у формованных изделий, у которых предел прочности при сжатии в направлении подъема пены иногда в 2 раза больше, чем в перпендикулярном направлении. Предел прочности при сжатии материала одной и той же марки, как правило, возрастает с увеличением плотности. В этом случае он зависит от плотности молекулярной массы, приходящейся на узел разветвления полимера. Прочность жестких ППУ обусловливается рецептурным составом, влияющим на плотность сшивки уретанового полимера, образующегося при реакции полиизоцианатов и простых полиэфиров. Это подтверждают данные таблицы 1. Прочность на сжатие ППУ-ЗС плотностью 50 кг/куб.м выше, чем прочность на сжатие ППУ-3 плотностью 140 кг/куб.м.
Наряду с жесткими ППУ однородной пористой структуры выпускают и широко используют интегральные (структурные) пенополиуретаны (ИППУ) с более высокими физико-механическими свойствами.
Интегральные жесткие пенополиуретаны имеют так называемую сэндвич-структуру: пористый средний слой, уплотняющийся по направлению к поверхности, с монолитной поверхностной зоной. Интегральные пенополиуретаны характеризуются высокой твердостью, прочностью к механическим нагрузкам, упругостью.
На рис. 1 представлена зависимость плотности ИППУ (структурные зоны) 01 толщины материала. Сечение ///-///соответствует ячеистой структуре пенопласта, сечение //-//-- зоне с неравномерным распределением плотности, сечение /-/ - монолитной корке, имеющей (в зависимости от пресс-формы) гладкую или рельефную поверхность.
Плотность поверхностною слоя ИППУ обычно составляет 600... 1000 кт/куб.м, плотность сердцевины 50... 100 кг/куб.м. эти величины можно изменять в определенных пределах.
Рис 1. Зависимость плотности ИППУ от толщины.
МЕТОДЫ ПЕРЕРАБОТКИ ПЛАСТМАСС
Изготовление деталей мебели из полимерных материалов осуществляется различными методами переработки: литьем под давлением, экструзией, прессованием, вакуум-формованием, беспрессовым методом, заливкой. Эти методы переработки применяются на предприятиях мебельной промышленности. Более подробно будет описан метод заливки, так как в отличие от других методов переработки готового полимерного материала в
детали мебели при его использовании в условиях мебельного предприятия фактически осуществляется синтез полимерного материала из компонентов с одновременным формированием деталей мебели.
ВСПЕНЕННЫЕ КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ
Вспененные газонаполненные термопласты в настоящее время широко применяются в мебельном производстве, особенно за рубежом. Это обусловлено тем, что при применении газонаполненных материалов снижается материалоемкость изделий (до 30. ...50%) при сохранении достаточно высокой прочности и более низкой кажущейся плотности. Газонаполненные термопласты представляют собой вспененные композиции с плотной монолитной поверхностной коркой, обеспечивающей стабильную форму изделия, хорошими физико-механическими и эксплуатационными свойствами.
Эти материалы относятся к так называемым частично вспененным структурным пенопластам с кажущейся плотностью выше 500 кг/куб.м и являются прекрасными заменителями монолитных пластмасс.
Вспененные термопласты широко применяются за рубежом для производства крупногабаритных деталей мебели и изделий методом литья под давлением.
Эти изделия легкие, обладают высокими показателями прочности и
влагонепроницаемости. Они имеют следующие преимущества перед изделиями из монолитных пластмасс: низкую кажущуюся плотность (500....
800 кг/'куб. м); отсутствие утяжек (даже у деталей с ребрами жесткости) и
внутренних напряжений, в результате чего в них не наблюдается коробление даже при запрессовке с закладными элементами; строгое соответствие
заданным размерам; высокая прочность на изгиб; возможность изготовления их с толстыми стенками (6,5.................. 18 мм) и стенками переменной толщины; менее гладкая поверхность, чем у изделий из монолитных материалов
и потому в большей степени имитирующая текстуру древесин.
Впервые газообразователи начали вводить в термопласты для предотвращения утяжек при формировании пластмассовых изделий, так как было установлено, что вспенивание материалов позволяет точнее обеспечивать любую сложную форму изделий.
При производстве изделий из газонаполненных термопластов в сырье добавляются гозонаполнители (физические или химические). В то время как в США традиционно применяют физические газообразователи, в России и в Европе в основном используют химические вспениватели. В качестве физических вспенивателей применяют фторированные алифатические углероды (трихлорфторметан, дихлорфторметан и др.), низкокипящие жидкости (хладоны), углеводороды, азот и др.
Химические газообразователи могут быть неорганические и органические. Из неорганических предпочтителен бикарбонат натрия (NaHCO3), так как при его использовании не происходит изменения цвета изделий, тогда как большинство неорганических гозообразователей вызывает изменение цвет. Кроме того, он несколько лучше совмещается с органическими полимерами, чем, например, углекислый аммоний (NH4)2CО3
Из органических газообразователей наиболее распространены вещества на основе азодикарбонамида в виде порошка, пасты и маточной смеси (концентрата). Использование концентрата или пасты проще, так как при загрузке порошкообразных газообразователей происходит пыление. Кроме того, при хранении они частично разлагаются, что снижает их вспенивающую способность..
Химические газообразователи хорошо совмещаются с органическими полимерами, поэтому они равномерно распределяются в материале, не снижают физико-химические и эксплуатационные свойства материала и не повышают его токсичность. Разложение их происходит достаточно быстро в определенном ограниченном диапазоне температур и носит необратимый характер.