Смекни!
smekni.com

Тема 5: рекурсивные фильтры (стр. 2 из 3)

|Hп(z)| = G Vn1(z)/Vp1(z).

Фазочастотная характеристика фильтра приведена на рис. 5.2.3 и определяется разностью фазовых углов векторов Vn1(z) и Vp1(z):

jп(w) = jn1-jp1.

Режекторный фильтр произвольной частоты. При проектировании на подавление любой другой частоты wv нули и полюсы располагаются на соответствующем радиусе z-плоскости. Радиальный угол направления на нуль и полюс определяются выражением:

jv =

p·wv/wN. (5.22.3)

Наличие двух знаков в выражении (5.2.3) отражает тот факт, что для получения вещественной функции фильтра нули и полюсы должны быть комплексно-сопряженными парами (их произведение дает вещественную функцию), т.е.:

Hv(z) = G(z-zn)(z-zn*)/[(z-zp)(z-zp*)]. (5.2.4)

Нули фильтра располагаются на единичной окружности:

zn = cos jv + j sin jv = Re zn + j Im zn. (5.2.5)

Полюсы - на полярном радиусе R:

zp = R·cos jv + j R·sin jv = Re zp + j Im zp. (5.2.6)

Пример положения нулей (n2 и n2*) и полюсов (р2 и р2*) приведен на рис.5.2.1. Подставляя (5.2.5-5.2.6) в (5.2.4), получаем:

Hv(z) =

, (5.2.7)

G = [1+(1+2Re zp)/R2] / (2+2Re zn). (5.2.8)

При приведении уравнения (5.2.7) в типовую форму:

Hv(z) =

, (5.2.7')

b0 = 1, b1 = -2·Re zn, b2 = 1. (5.2.9)

a1 = - (2·Re zp)/R2, a2 = 1/R2.

Соответственно, алгоритм вычислений:

yk = G·(xk+b1·xk-1+xk-2) – a1·yk-1 – a2·yk-2. (5.2.10)

В качестве примера проведем расчет режекторного фильтра на сетевую частоту питания приборов fs = 50 Гц, которая очень часто попадает в измеренные данные. При шаге дискретизации данных Dt = 0.001 сек радиальный угол на нули и полюса фильтра в z-плоскости:

fN = 1/2Dt = 500 Гц, j = p·fs/fN = 0.1π.

Радиус полюса фильтра примем равным R = 1.01. Значения нуля и полюса:

zn = cos j + j sin j = 0.951 + 0.309 j,

zp = R·cos jv + j R·sin jv = 0.961 + 0.312 j.

Рис. 5.2.4.

Значение масштабного множителя G по (5.2.8):

G = 0.99.

Значения коэффициентов передаточной функции:

b1 = -2·Re zn = -1.902,

a1 = - (2·Re zp)/R2 = -1.883, a2 = 1/R2 = 0.98.

При подстановке коэффициентов в уравнение (5.2.7') и замене z = exp(-jω) может быть получена частотная передаточная функция фильтра, которая приведена на рис. 5.2.4:

0.99[1-1.902·exp(-jω)+exp(-2jω)]

H(w) = -------------------------------------------------

1-1.883·exp(-jω)+0.98·exp(-2jω)

Алгоритм фильтра:

yk = 0.99·(xk - 1.902·xk-1 + xk-2) + 1.883·yk-1 – 0.98·yk-2.

На рис. 5.2.5 приведен модельный входной сигнал фильтра, состоящий из суммы двух равных по амплитуде гармоник с частотой 50 и 53 Гц, и сигнал на выходе фильтра (смещен вверх). Справа на рисунке приведены спектры входного и выходного сигналов. Спектр выходного сигнала зарегистрирован после интервала установления реакции фильтра, который хорошо заметен на начальной части графика выходного сигнала. После установления сигнал на выходе фильтра практически полностью освобожден от гармоники 50 Гц.

Рис. 5.2.5.

Рис. 5.2.6.

При R → 1 ширина полосы подавления фильтра становится все более узкой, но при этом увеличивается длительность импульсной реакции фильтра и, соответственно, время установления фильтра при изменении спектра входного сигнала. В первом приближении значимая часть импульсной реакции режекторных фильтров равна (4÷5)/(R-1). Пример импульсной реакции для фильтра, вычисленного выше, приведен на рис. 5.2.6. Отклик фильтра получен при подаче на вход РЦФ импульса Кронекера. Для наглядности реакции на графике не показан начальный пик отклика (отсчет на нулевой точке), амплитуда которого равна значению G.

Селекторный фильтр. Если в уравнении (5.2.4) опустить нули, то получим селекторный фильтр, выделяющий сигналы одной частоты ωs – частоты селекции, с передаточной функцией:

Hs(z) = G/[(z-zp)(z-zp*)], (5.2.11)

Hs(z) =

, (5.2.11')

Характер передаточной функции (5.2.11) можно представить непосредственно по z-плоскости (рис. 5.2.1). При расположении полюсов фильтра за пределами единичного круга (например, в точках р2 и р2*) значение коэффициента передачи фильтра на произвольной частоте ω на единичной окружности будет обратно пропорционально величине векторов из этих точек окружности на полюса фильтра. При изменении ω от нуля до ±π (движение по единичной окружности на z-плоскости по или против часовой стрелки) один из векторов (на полюс противоположной полуплоскости) изменяется в достаточно небольших пределах (не превышая значения 2), в то время как второй из векторов (на полюс в своей полуплоскости) будут сначала уменьшаться, достигает минимума при расположении ω на полярном радиусе полюса (на частоте селекции ωs), а затем снова начинает увеличиваться. Соответственно, значение Hs(ω) максимально на частоте селекции ±ωs и при R → 1 может быть очень высоким. Пример передаточной функции (при G1=1) приведен на рис. 5.2.7.

Рис. 5.2.7.

При необходимости фильтр может быть пронормирован к 1 на частоте селекции определением значения G1 по условию Hs(ω) = 1 при ω = ωs, т.е.:

G1 = 1+a1 z(ws)+a2 z(ws)2.

Фильтр (5.2.11) в принципе не может иметь нулевого коэффициента передачи на других частотах главного диапазона. Если последнее является обязательным, то фильтр выполняется методом обращения режекторного фильтра Hv(z):

Hs(z) = 1-Hv(z).

Hs(z) =

. (5.2.12)

с0 = 1-G, c1 = a1-Gb1, c2 = a2-G.

Рис. 5.2.8.

Пример передаточной функции фильтра приведен на рис. 5.2.8. Пример применения фильтра для выделения гармонического сигнала на уровне шумов, мощность которых больше мощности сигнала, приведен на рис. 5.2.9.

Рис. 5.2.9. Фильтрация сигнала селекторным РЦФ.

Курсовая работа 12- Разработка программы расчета режекторных и селекторных РЦФ и их использования.

Курсовая работа 13- Исследование возможности повышения добротности режекторных РЦФ путем параллельной комбинации режекторного РЦФ с двумя боковыми селекторными РЦФ.

Курсовая работа 14- Исследование возможности повышения добротности селекторного РЦФ путем параллельной комбинации селекторного РЦФ с двумя боковыми режекторными РЦФ.

Курсовая работа 15- Исследование возможности дополнения интегрирующих фильтров Симпсона и прямоугольников режекторными фильтрами на частоту Найквиста.

5.3. Билинейное z-преобразование.

Принцип преобразования. При стандартном z-преобразовании передаточной функции используется замена переменной вида:

z = exp(-pDt), (5.3.1)

где Dt - шаг дискретизации данных, p – комплексная переменная, р = s+jw.

Уравнение (5.3.1) можно записать в виде ln z = -pDt и разложить ln z в ряд:

ln z = -2[(1-z)/(1+z)+(1-z)3/(3(1-z)3)+ ....], z > 0.

Первый член этого разложения и представляет собой билинейное z- преобразование:

p = (2/Dt)(1-z)/(1+z). (5.3.2)

По сути, оно представляет собой отображение точек комплексной p-плоскости в точки комплексной z-плоскости, и наоборот. В общем виде:

p = g(1-z)/(1+z), (5.3.3)

z = (g-p)/(g+p). (5.3.4)

Значение множителя g не меняет формы преобразования, в связи с чем обычно принимают g = 1. Подставим p = jw в (5.3.4) и выразим z в показательной форме:

z = r exp(jj(w)), r = |z| = 1.

j(w) = 2 arctg(w/g),­

Рис. 5.3.1.

При изменении w от - ¥ до ¥ фазовый угол j(w) монотонно изменяется от -p до p (см. рис. 5.3.1), т.е. мнимая ось p-плоскости (p = jw, -¥ < w < ¥) отображается в единичную окружность z-плоскости. В частности:

w = 0, z = exp(j0) = 1,

w =

¥, z = exp(
jp) = -1

Деформация частотной шкалы. Реальное отображение передаточных функций фильтров является непрерывным (в силу своей физической сущности) и для упрощения дальнейших расчетов обычно задается в аналитической форме в комплексной р-плоскости по частотному аргументу ω от -¥ до +¥. При билинейном z-преобразовании происходит нелинейное искажение шкалы частот: полный частотный диапазон от - ¥ до ¥ непрерывных функций в р-плоскости сжимается до главного частотного диапазона от -p/Dt до p/Dt дискретных функций в z-плоскости. При задании уравнений непрерывных передаточных функций в частотной области это должно сопровождаться соответствующей обратной деформацией частотной шкалы, которая будет скомпенсирована при билинейном z-преобразовании. Подставляя в (5.3.2) z = exp(-jwDt) и умножая числитель и знаменатель правой части полученного уравнения на exp(jwDt/2), получим: