h = Ö 1 – ————— ,
S (Y – )2
~
где Yt – теоретические уровни ряда, согласно полученному тренду;
Y – фактические значения уровня динамического ряда;
– средний уровень фактического динамического ряда.
Чем ближе эмпирическое корреляционное отношение к 1, тем надежнее рассчитанное уравнение, и в этом случае его можно использовать для получения значения уровня будущего периода динамического ряда (экстраполировать).
Рассмотрим технику выравнивания ряда по уравнению прямой. Параметры а0и а1 искомой прямой определяются по методу наименьших квадратов. Составляется система нормальных уравнений:
а0n + a1åt = åY
а0åt + а1åt2 =åt
где t – порядковый номер интервала или момента времени.
Расчет параметров а0 и а1 упрощается, если за начало отсчета
t = 0 принять центральный интервал или момент. Тогда åt = 0, и система уравнений примет вид:
åY | åYt | |||
а0n = åY | а1åt2 = åY•t | Отсюда: | а0 = ——–; | а1 = —— . |
n | åt2 |
Аналитическое выравнивание ряда динамики позволяет выявить более четким направление основной тенденции.
Абсолютным показателем отклонения фактических уровней от тренда является среднее квадратическое отклонение se:
S(Y – Yt)2
se = —————.
n
Относительной мерой колеблемости служит модифицированный коэффициент вариаций ne:
se
ne% = —— • 100%
Для расчета параметров уравнения и проверки надежности уравнения необходимо построить вспомогательную таблицу:
Исходные данные для расчета параметров линейной зависимости
Год | ~ ~ | |||||
У | t | t2 | Y • t | Y t | (Y – Yt)2 | ( – Y)2 |
Задача 4 составлена на усвоение индексного анализа динамики статистических показателей, состоящих из элементов, напосредственно не поддающихся суммированию и представляющих сложные социально-экономические явления.
Общий или агрегатный индекс состоит из: 1) индексируемой величины, характер изменения которой определяется; 2) соизмерителя, который называется весом. Для исчисления общих индексов необходимо привести их составные части к сопоставимому виду, когда веса в числителе и знаменателе берутся одинаковыми.
Общий индекс цен:
åp1q1
Iq = ———,
åp0q1
где p1 и p0 – цена единицы продукции в отчетном и базисном периодах.
Применение следующего индекса дает возможность оценить изменения физического объема продаж при сохранении цен неизменными, т.е. не оказывающими влияние на динамику объема продаж.
Общий индекс физического объема товарооборота:
åq1p0
Iq = ———,
åq0p0
Необходимо уяснить правило выбор веса для качественных (себестоимость, цена, урожайность и т.д.) и количественных (количество произведенной, проданной продукции, посевная площадь и т.д.) признаков при построении агрегатной формы общих индексов. Индексы объемных показателей рассчитываются по весам качественных показателей базисного периода. Индексы качественных показателей – по весам объемных показателей отчетного периода.
В общем индексе стоимости товарооборота сопоставляются два стоимостных показателя – товарообороты отчетного и базисного периодов, поэтому индексируются оба элемента показателя.
Общий индекс стоимости товарооборота:
åp1q1
Ipq = ——–,
åp0q0
Между индексами существует взаимосвязь:
Ipq = Ip • Iq
Средний арифметический и средний гармонический индексы
Практическое их применение зависит от исходной статистической информации. Если у исходного агрегатного индекса условная величина у исходного агрегатного индекса в числителе, то преобразуем в среднеарифметическую форму. Преобразование происходит за счет индивидуального индекса исследуемого показателя.
Например, в индексе цен в знаменателе находится условная величина товарооборота отчетного периода по ценам базисного периода, поэтому в результате получаем среднегармонический индекс.
åP1q1 Ip = ——– ; åP0p1 | P1 ip = —– ® P0 | åP1q1 Ip = —–———— P1q1 å——— ip |
Агрегатный индекс физического объема содержит в числителе условный товарооборот отчетного периода в ценах базисного периода, поэтому можно преобразовать его в среднеарифметический индекс:
åq1P0 I q = ——–– ; åq0P0 | q1 i q = —– ® q0 | åiqq0P0 I q = ———–. åq0P0 |
Индексы переменного, постоянного состава и структурных сдвигов
Применение этих индексов служит анализа динамики среднего уровня качественного показателя. Необходимость расчета этих индексов возникает в том случае, когда динамика средних показателей отражает не только изменение осредняемого признака, но и изменение структуры совокупности.
На основе данных о цене деревообрабатывающего станка Masters фирмами города Москвы и количестве реализованного объема рассмотрим изменение средней цены.
Индекс переменного состава – это отношение средних величин качественного показателя. Например, индекс переменного состава имеет вид:
1 Ipпер = — 0 | åP1q1 = ——–– : åq1 | åP0q0 ——–– . åq0 |
Индекс переменного состава отражает динамику среднего показателя как за счет индексируемой величины, так и за счет изменения весов по которым взвешивается средняя.
Чтобы исключить влияние изменения структуры совокупности на динамику средних величин, можно для двух периодов рассчитать средние по одной и той же структуре. Такие средние называются стандартизованными, а их отношение представляет собой индекс фиксированного состава:
åP1q1 Ipфикс = —–—– åq1 | åP0q1 : ——– åq1 | åP1q1 = ——–– = 1 : усл åP0q1 |
Этот индекс отражает динамику среднего показателя только за счет изменения индексируемой величины (при фиксировании весов на уровне отчетного периода).
Индекс структурных сдвигов отражает динамику среднего показателя лишь за счет изменения весов (при фиксировании индексируемой переменной на уровне базисного периода):
åP0q1 Ipстр.сдв = —–— åq1 | åP0q0 : ——– åq0 | = усл : 0 |
Между рассмотренными индексами существует следующая взаимосвязь:
Ipпер.сост = Ipфикс.сост • Ipстр.сдв
Задача 5 составлена на вычисление уравнения взаимосвязи между исследуемыми признаками (факторным и результативным) и ее оценки при помощи парного (линейного) коэффициента корреляции, коэффициента детерминации и эмпирического корреляционного отношения.
Теснота связи при линейной зависимости измеряется с помощью линейного коэффициента корреляции:
____
xi yi – i • i
r = ——————————————–
—————————————
Ö | åxi2 —— – ( )2 n | åyi2 • —— – ( )2 n |
При линейной и нелинейной зависимости между признаками теснота связи между результативным и факторным признаками, определяется с помощью эмпирического корреляционного отношения, которое рассчитывается по формуле: