124. В двух одинаковых коробках находятся карандаши. Известно, что 1/3 карандашей в первый коробке и 1/4 карандашей во второй характеризуются твердостью ТМ. Наугад выбирается одна из коробок и из нее наугад извлекается один карандаш. Он оказался твердости ТМ. Какова вероятность того, что он извлечен из первой коробки?
125. Покупатель может приобрести нужный ему товар в двух магазинах. Вероятности обращения в каждый из двух магазинов зависят от их местоположения и соответственно равны 0,4 и 0,6. Вероятность того, что к приходу покупателя нужный ему товар не будет распродан, равна 0,7 для первого магазина и 0,3 для второго. Какова вероятность того, что покупатель приобретет нужный ему товар?
126. Два контролера производят оценку качества выпускаемых изделий. Вероятность того, что очередное изделие попадет к первому контролеру, равна 0,45, ко второму контролеру - 0,55. Первый контролер выявляет имеющийся дефект с вероятностью 0,9, а второй - с вероятностью 0,8. Вычислить вероятность того, что изделие с дефектом будет признано годным к эксплуатации.
127. Пассажир может приобрести билет в одной из двух касс. Вероятность обращения в первую кассу составляет 0,2, а во вторую - 0,8. Вероятность того, что к моменту прихода пассажира нужные ему билеты будут распроданы, равна 0,25 для первой кассы и 0,6 - для второй кассы. Пассажир посетил одну из касс и приобрел билет. Какова вероятность того, что он приобрел его во второй кассе?
128. В магазин поступил одноименный товар, изготовленный двумя предприятиями. С первого предприятия поступило 150 единиц, из них 30 единиц первого сорта, а со второго предприятия - 200 единиц, из них 50 - первого сорта. Из общей массы товара наугад извлекается одна единица. Она оказалась первого сорта. Какова вероятность того, что она изготовлена на первом предприятии?
129. Два специалиста ОТК проверяют качество выпускаемых изделий, причем каждое изделие с одинаковой вероятностью может быть проверено любым из них. Вероятность выявления дефекта первым специалистом равна 0,8, а вторым - 0,9. Из массы проверенных изделий наугад выбирается одно. Оно оказалось с дефектом. Какова вероятность того, что ошибку допустил второй контролер?
130. При сдаче экзамена студент может с одинаковой вероятностью выбрать одного из двух экзаменаторов. Вероятность сдать экзамен по высшей математике первому экзаменатору 0,5, второму 0,1. Студент сдал экзамен. Найти вероятность того, что он сдавал второму экзаменатору.
131. В семье трое детей. Найти вероятность того, что среди них хотя бы одна девочка. Вероятность рождения мальчика принять равной 0,51.
132. Пусть вероятность поражения мишени стрелком при каждом выстреле постоянна и равна 0,8. Вычислить вероятность того, что при пяти выстрелах будет: а) не более двух промахов; б) три попадания.
133. Известно, что 30% большой партии обуви, поступившей в магазин, составляет обувь 38 размера. Найти наивероятнейшее число пар обуви 38 размера среди шести упаковок, отобранных наугад из этой партии, и вычислить соответствующую этому числу вероятность.
134. Известно, что 60% большой партии товара в одинаковых упаковках составляет товар 1 сорта. Найти наивероятнейшее число единиц товара 1 сорта среди пяти единиц, отобранных из общей массы товара и вычислить соответствующую этому событию вероятность.
135. Для прядения смешаны поровну белый и окрашенный хлопок. Какова вероятность среди 8 случайно отобранных нитей обнаружить: а) ровно 3 окрашенных; б) менее трех окрашенных.
136. Установлено, что в среднем 5% мужчин страдают дальтонизмом. Вычислить вероятность того, что среди пяти мужчин: а) не будет ни одного дальтоника; 6) не более одного дальтоника.
137. Известно, что при посадке, в среднем четвертая часть саженцев погибает. Найти наивероятнейшее число прижившихся саженцев среди шести пересаженных и вычислить соответствующую этому событию вероятность.
138. Вычислить вероятность того, что при 5 подбрасываниях монеты герб выпадет: а) не менее трех раз; б) ни одного раза.
139. Установлено, что в среднем 10% стаканов в данной партии имеют дефект. Вычислить вероятность того, что среди 6 отобранных наугад стаканов из этой партии: а) будут иметь дефект не более одного стакана; б) 4 стакана не будут иметь дефект.
140. Известно, что в среднем 60% автомашин не требуют дополнительной регулировки при продаже. Найти наивероятнейшее число автомашин, не требующих дополнительной регулировки среди поступивших в продажу 7 и вычислить соответствующую этому событию вероятность.
141. По данным магазина, установлено, что в среднем 20% телевизоров выходят из строя в течение гарантийного срока. Какова вероятность того, что из 225 проданных телевизоров будут работать исправно в течение гарантийного срока: а) 184 телевизора; б) от 172 до 184 телевизоров.
142. Известно, что одна четвертая часть пересаженных саженцев погибает. Какова вероятность того, что из 300 саженцев: а) погибнет ровно 76;
б) приживется от 210 до 224.
143. По данным опроса установлено, что 30% покупателей требуется женская обувь 37 размера. Известно, что ежедневно магазин посещает в среднем 189 человек. Найти наивероятнейшее число покупателей, которым потребуется женская обувь 37 размера, и вычислить соответствующую этому событию вероятность.
144. Установлено, что фирма выполняет в срок в среднем 60% заказов. Какова вероятность того, что из 150 заказов, принятых в течение некоторого времени, будут выполнены в срок: а) ровно 90 заказов; б) от 93 до 107 заказов.
145. Известно, что в данном технологическом процессе 10% изделий имеют дефект. Какова вероятность того, что в партии из 400 изделий: а) не будут иметь дефекта 378 изделий; б) будут иметь дефект от 25 до 43 изделий.
146. Известно, что в среднем 64% студентов потока выполняют контрольные работы в срок. Какова вероятность того, что из 100 студентов потока задержат представление контрольных работ: а) 30 студентов; б) от 30 до 48 студентов.
147. Полагая вероятность рождения девочки 0,49, найти наивероятнейшее число девочек среди 204 новорожденных и вычислить соответствующую этому числу вероятность.
148. Установлено, что третья часть покупателей желает приобрести модную одежду. Магазин посещает в среднем 800 человек в месяц. Найти наивероятнейшее число покупателей, желающих приобрести модную одежду и вычислить соответствующую этому событию вероятность.
149. Работниками магазина установлено, что в среднем 55% пылесосов не требуют дополнительной регулировки при продаже. Найти наивероятнейшее число пылесосов, не требующих дополнительной регулировки, в партии из 110 пылесосов.
150. При оценке качества продукции было установлено, что в среднем третья часть выпускаемой фабрикой обуви имеет различные дефекты отделки. Какова вероятность того, что в партии из 200 пар, поступившей в магазин: а) будут иметь дефекты отделки 60 пар; б) не будут иметь дефектов отделки от 120 до 148 пар.
151-160. Закон распределения дискретной случайной величины X приведен в табл.4. Требуется: а) определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х) случайной величины X; б) построить график этого распределения.
Таблица 4
Номер задачи | Значения случайной величины Х | ||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
151 | 0,01 | 0,12 | 0,23 | 0,28 | 0,19 | 0,11 | 0,06 |
152 | 0,20 | 0,31 | 0,24 | 0,13 | 0,07 | 0,04 | 0,01 |
153 | 0,04 | 0,08 | 0,32 | 0,31 | 0,15 | 0,08 | 0,02 |
154 | 0,42 | 0,23 | 0,15 | 0,10 | 0,06 | 0,03 | 0,01 |
155 | 0,03 | 0,29 | 0,12 | 0,15 | 0,21 | 0,16 | 0,04 |
156 | 0,05 | 0,12 | 0,18 | 0,30 | 0,18 | 0,12 | 0,05 |
157 | 0,06 | 0,08 | 0,12 | 0,24 | 0,33 | 0,14 | 0,03 |
158 | 0,16 | 0,25 | 0,25 | 0,16 | 0,10 | 0,05 | 0,03 |
159 | 0,02 | 0,38 | 0,30 | 0,16 | 0,08 | 0,04 | 0,02 |
160 | 0,08 | 0,10 | 0,14 | 0,17 | 0,19 | 0,18 | 0,14 |
ЛИТЕРАТУРА