Смекни!
smekni.com

Методические указания по выполнению практических и лабораторных работ по статистике содержат требования по их выполнению, порядок расчетов вручную и с использованием ms excel, ппп statistica. (стр. 1 из 4)

ВВЕДЕНИЕ

Методические указания по выполнению практических и лабораторных работ по статистике содержат требования по их выполнению, порядок расчетов вручную и с использованием MS Excel, ППП Statistica.

Часть II методических указаний характеризует расчет показателей вариации: размаха вариации, квартилей и квартильного отклонения, среднего линейного отклонения, дисперсии и среднего квадратического отклонения, коэффициентов осцилляции, вариации, асимметрии, эксцесса и других.

Расчет показателей вариации наряду с построением интервальных и дискретных вариационных рядов и расчетом средних величин, представленными в части I методических указаний, имеет большое значение для анализа рядов распределения.


1. ПРАКТИЧЕСКАЯ РАБОТА №3

РАСЧЕТ ПОКАЗАТЕЛЕЙ ВАРИАЦИИ

Цель работы: получение практических навыков в расчете различных показателей (меры) вариации в зависимости от поставленных исследованием задач.

Порядок выполнения работы:

1. Определить вид и форму (простая или взвешенная) показателей вариации.

2. Рассчитать показатели степени вариации для сгруппированных и несгруппированных данных и показатели формы распределения.

3. Сформулировать выводы.

Пример расчета показателей вариации

1. Определение вида и формы показателей вариации.

Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным относятся: размах вариации, квартильное отклонение, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение. Относительными показателями являются коэффициенты осцилляции, вариации, относительное линейное отклонение и т. д.

Размах вариации (R) является наиболее простым измерителем вариации признака и определяется по следующей формуле:

, (1)

где

– наибольшее значение варьирующего признака;

– наименьшее значение варьирующего признака.

Квартильное отклонение (Q) – применяется для характеристики вариации признака в совокупности. Может использоваться вместо размаха вариации во избежание недостатков, связанных с использованием крайних значений.

, (2)

где

и
– соответственно первая и третья квартили распределения.

Квартили – это значения признака в ранжированном ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине

; 25% единиц будут заключены между
и
; 25% единиц будут заключены между
и
, и остальные 25% превосходят
.

Квартили определяются по формулам:

, (3)

где
– нижняя граница интервала, в котором находится первая квартиль;

– сумма накопленных частот интервалов, предшествующих интервалу, в котором находится первая квартиль;

– частота интервала, в котором находится первая квартиль.

, (4)

где Ме – медиана ряда;

, (5)

условные обозначения те же, что и для величины
.

В симметричных или умеренно асимметричных распределениях Q»2/3s. Так как на квартильное отклонение не влияют отклонения всех значений признака, то его использование следует ограничить случаями, когда определение среднего квадратического отклонения затруднительно или невозможно.

Среднее линейное отклонение (

) представляет собой среднюю величину из абсолютных отклонений вариантов признака от их средней. Его можно рассчитать по формуле средней арифметической, как невзвешенной, так и взвешенной, в зависимости от отсутствия или наличия частот в ряду распределения.

(6) - невзвешенное среднее линейное отклонение,

(7) - взвешенное среднее линейное отклонение.

Дисперсия (

) – средний квадрат отклонений индивидуальных значений признака от их средней величины. Дисперсия вычисляется по формулам простой невзвешенной и взвешенной.

(8) - невзвешенная,

(9) - взвешенная.

Среднее квадратическое отклонение (s) – наиболее распространенный показатель вариации, представляет собой квадратный корень из значения дисперсии.

(10)

Размах вариации, квартильное отклонение, среднее линейное и квадратическое отклонения – величины именованные, имеют размерность осредняемого признака.

Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях вычисляются относительные показатели вариации. Базой для сравнения служит средняя арифметическая. Чаще всего относительные показатели выражаются в процентах и характеризуют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности.

Коэффициент осцилляции рассчитывается по формуле:

, (11)

Относительное линейное отклонение (линейный коэффициент вариации):

, (12)

Относительный показатель квартильной вариации:

(13) или
(14)

Коэффициент вариации:

, (15)

Наиболее часто применяемый в статистике показатель относительной колеблемости – коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и как характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (Ефимова М.Р., Рябцев В.М. Общая теория статистики: Учебник М.: Финансы и статистика, 1991 г., стр. 105).

Для получения приблизительного представления о форме распределения строят графики распределения (полигон и гистограмму).

В практике статистического исследования приходится встречаться с самыми различными распределениями. При изучении однородных совокупностей имеем дело, как правило, с одновершинными распределениями. Многовершинность свидетельствует о неоднородности изучаемой совокупности, появление двух и более вершин говорит о необходимости перегруппировки данных с целью выделения более однородных групп. Выяснение общего характера распределения предполагает оценку степени его однородности, а также вычисление показателей асимметрии и эксцесса. Симметричным является распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричных распределений средняя арифметическая, мода и медиана равны между собой. В связи с этим простейший показатель асимметрии основан на соотношении показателей центра распределения: чем больше разница между средними

, тем больше асимметрия ряда.

Для сравнительного анализа степени асимметрии нескольких распределений рассчитывают относительный показатель As:

. (16)

Величина показателя As может быть положительной и отрицательной. Положительная величина показателя указывает на наличие правосторонней асимметрии (правая ветвь относительно максимальной ординаты вытянута больше, чем левая). При правосторонней асимметрии между показателями центра распределения существует соотношение:

. Отрицательный знак показателя асимметрии свидетельствует о наличии левосторонней асимметрии (Рисунок 1). Между показателями центра распределения в этом случае имеется такое соотношение:
.