Смекни!
smekni.com

Методические указания к выполнению курсовой работы. Для студентов всех специальностей (стр. 2 из 4)

3.2. Расчет состава углеводородного потока на входе в реакционный блок

Рис.2. Схема потоков у/в. фракции С4 с применением рециркуляции:

РБ - реакционный блок;
АК - абсорбционная колонна;

z - степень разбавления - отношение количества циркулирую­щего потока к свежему;

x(I) - концентрация компонента потока на входе в реакционный блок, доли мас.

С учетом обозначений потоков на рисунке 2 выражение (1) принимает вид:

yz (1) =

, доли мас. (2)

Отсюда после преобразований получаем выражение для определения величины концентрации изобутилена на входе в реакционный блок:

x (1) =

, доли мас. (3)

С другой стороны:

x (1) =

, доли мас. (4)

Откуда после преобразований получаем выражение для определения степени разбавления:

z =

, доли мас. (5)

Содержание остальных компонентов у/в. потока на входе в реактор вычисляют по формуле:

x (I) =

, доли мас. (6)

Расчеты проводятся с применением программы (приложение 1), составленной на языке "Фортран-4".

Полученные результаты используются в дальнейших расчетах.

3.3. Расчет материального баланса реакционного блока (без учета флегмы).

Производительность установки по целевому продукту (GE, кг/ч) вычисляется с учетом числа рабочих дней в году (L), приведенных в задании. Расчет материального баланса процесса производства МТБЭ осуществляется с применением программы для работы на ЭВМ (см. приложение 2). Сущность программы заключается в следующем:

Вычисляется состав целевого продукта:

метилтретбутиловый эфир

GEK(1) = GE*xz(1) (7)

Содержание компонентов целевого продукта вычисляется как

GEK(I) = GE*xz(I) (8)

Образование основного компонента целевого продукта, протекающее в соответствии с уравнением (1), сопровождается побочными реакциями:

(CH3)2C = CH2 + HOH

(CH3)3COH (9)

2 i - C4H8

i - C8H16 (10)

Исходя из стехиометрических соотношений уравнений (1, 9 и 10), опре­деляют количества реагентов, необходимых для их образования (программа 2):

RI1 -изобутилена на образование метилтретбутилового эфира, кг/ч;

RI2 - изобутилена на образование третбутилового спирта, кг/ч;

RI3 - изобутилена на образование диизобутилена, кг/ч.

Отсюда общее количество конвертированного изобутилена составит:

SRI = RI1 + RI2 + RI3, кг/ч. (11)

RME - количество метанола, расходуемого в данном процессе, кг/ч;

GW - количество воды, пошедшее на образование третбути­лового спирта, кг/ч.

Количество изобутилена, поступающего в реакционный блок, вычисляется как:

GG(1) = SRI / AL, кг/ч,

отсюда общее количество у/в. фракции составляет

GGO = GG(1) / x(1), кг/ч. (12)

Поскольку состав у/в. фракции, поступающей в реакционный блок, известен (см.программу 1), определяем содержание инертных компонен­тов ее с помощью соотношения

GG(I) = GGO * x(I) (13)

С учетом соотношения метанол: изобутилен (D, моль) на входе в реакционный блок определяем GM - количество метанола, поступающе­го в реактор, кг/ч.

Количество изобутилена в газовой фазе на выходе из реактора GR(1), кг/ч вычисляется как разность между его количеством на входе в реакционный блок GG(1), кг/ч и общим количеством конвертирован­ного изобутилена.

Аналогично вычисляется содержание метанола в газовой фазе (GMR, кг/ч).

Отсюда общее количество у/в.-метанольной смеси, уходящей через верх реакционного блока, вычисляется как сумма количеств инертов, содержащихся в у/в. потоке на входе в реакционный блок, непрореагировавших изобутилена (GG(1), кг/ч) и метанола (GMR, кг/ч). Результат расчета материального баланса распечатывается в виде таблицы.

3.4. Расчет теплового эффекта реакции

Расчет теплового эффекта процесса производства МТБЭ проводит­ся с применением программы для работы на ЭВМ (приложение 3). В основе расчета - методики, изложенные в работах /10, 11/. Величины стандартных теплот образования кислородсодержащих соединений (метилтретбутилового эфира, метилтретбутилового спирта, метанола) приведены в работах /8, 12/, а углеводородов - в работах /10, 13/.

В результате расчета определяется как общее количество тепла, выделяющееся в процессе (QR, кДж/ч)i ,так и удельные его значения (QUG, кДж/кг и QUM, кДж/моль С4Н9). Последние срав­ниваются с соответствующими величинами, опубликованными в работах /6, 8/. Общее значение количества тепла, выделяющегося в данном процессе (QR), используется в дальнейших расчетах.

3.5. Расчет количества флегмового потока и общего количества газа, выходящего из реакционного блока

В технологической схеме производства МТБЭ предусмотрена подача в реакционный блок в виде флегмы углеводород - метанольной фракции после ее конденсации в конденсаторе - холодильнике. При ее испарении снимается тепло, выделяющееся в результате протекания основной и побочных реакций данного процесса. Расчет проводится на ЭВМ (приложение 4). Принцип расчета заключается в следующем.

Теплоту испарения флегмы, подаваемой в реакционный блок TG, определяют по закону аддитивности, исходя из содержания ее ком­понентов в смеси (YO(I) доли мас.), вычисленного с применением программы 2, по соотношению

TG = S TR(I)*YMO(I), кДж/моль, (14)

где YMO - содержание компонентов, мольн. доли, TR(I) кДж/моль - величины теплот испарения компонентов флегмового потока, приведен­ные в работах /10, 12, 13/.

Отсюда количество флегмового потока, подаваемого в реакционный блок, составляет:

GF =

, (15)

где QR - общее количество тепла, выделяющегося в данном процессе.

MG - средняя молекулярная масса флегмового потока.

Общее количество газа, уходящего через верх реакционного блока, определяется так:

GWG = GRO + GF, кг/ч, (16)

где GRO, кг/ч (программа 2).

Флегмовое число (RF) вычисляется как отношение

RF = GF / GRO. (17)

3.6. Материальный баланс реакционного блока с учетом флегмы

Материальный баланс составляется с использованием данных, полученных в расчетах при работе на ЭВМ с применением программ 2 и 4. Полученные при этом данные заносятся в таблицу 1.


Таблица 1.

Приход

Расход

компонент

кг/ч

доли масс.

компонент

кг/ч

доли масс.

у/в. поток

газ

GG(1)

GG(1)

P(1)

x(1)

GRW(1)

GRW(1)

xR(1)

y0(1)

GG(2)

GG(2)

P(2)

x(2)

GRW(2)

GRW(2)

xR(2)

y0(2)

метанол

GWM

xM

y0M

у/в.

GG0

P1N

1,0000

газ

GWM

xG

1,0000

метанол

GM

PM

-

МТБЭ

GE

xE

-

вода

GW

PW

-

сырье

SP

1,0000

-

Флегма

GF(1)

GF(1)

y0(1)

GF(2)

GF(2)

y0(2)

итого

GF

1,0000

Всего

G0R

-

Всего

G0R

-

-

4. МАТЕРИАЛЬНЫЙ БАЛАНС ПРОМЫВНОЙ КОЛОННЫ И КОЛОННЫ РЕГЕНЕРАЦИИ МЕТАНОЛА