УРАВНЕНИЕ СОСТОЯНИЯ КРОВИ ПРИ ТЕЧЕНИИ
В МЕЛКИХ СОСУДАХ
А.Е. Медведев
Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН
630090, Новосибирск,
e-mail: medvedev@itam.nsc.ru
Введение. Течение крови имеет ряд особенностей – в крупных кровеносных сосудах (более 1000 микрон) кровь ведет себя как ньютоновская вязкая несжимаемая жидкость, для более мелких сосудов необходимо учитывать реологические неньютоновские свойства течения крови [1]. Поэтому для математического описания течения крови в крупных сосудах обычно используется модель вязкой несжимаемой ньютоновской жидкости, а для мелких кровеносных сосудов – различные реологические модели неньютоновской жидкости.
Особенности течения крови. Кровь (с точки зрения механики) представляет собой суспензию, состоящую из плазмы (вязкая несжимаемая жидкость) и эритроцитов (двояковогнутые деформируемые диски размером 8 мкм на 2.5 мкм, заполненные гелем). Одной из основных характеристик крови является показатель гематокрита
Модель течения крови. Рассмотрим кровь как суспензию, состоящую из двух несжимаемых фаз. Первая фаза – плазма крови, вторая – эритроциты. Относительная вязкость суспензии зависит от концентрации и, согласно формуле Эйнштейна, имеет вид
где
Известно ([2]), что эритроциты неравномерно распределены по сечению сосуда, то есть объемная доля эритроцитов
где
ã Медведев А.Е., 2011 |
Скорость крови
a b |
Для простоты примем, что распределение объемной доля эритроцитов
где
Эффект образования пристеночного слоя связан с поперечной миграцией эритроцитов при движении по сосуду. В механике суспензий это явление называется эффектом Сегре-Зильберберга. Толщина пристеночного слоя зависит от диаметра трубы, свойств несущей жидкости и частиц. Поведение эритроцитов во время движения кардинально отличается от твердых частиц – эритроциты могут деформироваться и слипаться, образую “монетные столбики”. Для нахождения уравнения состояния крови были взяты экспериментальные данные по зависимости показателя гематокрита от диаметра сосуда (рис. 1a).
Задача нахождения уравнения состояния крови сводится к решению алгебраического уравнения на толщину пристеночного слоя
где
a b |
Выводы. Проведено сравнение с известными экспериментальными данными [1-3] по относительной наблюдаемой вязкости
Получена зависимость вязкости крови от диаметра сосуда для описания течения в сосудах диаметра больше 4.5 микрон. Данные зависимости имеют единые вид для сосудов всех размеров и переходят в формулы течения Пуазейля при больших диаметрах сосудов.
Работа выполнена при поддержке междисциплинарного интеграционного проекта СО РАН № 91.
СПИСОК ЛИТЕРАТУРЫ
1. Левтов В.А., Регирер С.А., Шадрина Н.Х. Реология крови. М.: Медицина, 1982. 272 с.
2. Pries A.R., Secomb T.W. In: Handbook of Physiology: Microcirculation. Ed. Tuma R.F., Dura W.N., Ley K. 2nd ed. Academ Press. 2008. P. 3–36.
3. Sharan M., Popel A.S. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall // Biorheology. 2001. V. 38. P. 415–428.
4. Long D.S., Smith M.L., Pries A.R. et al. Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution // Proc. Natl. Acad. Sci. USA. 2004. V. 101. N. 27. P. 10060–10065.