Смекни!
smekni.com

Методика и условия проводимых экспериментальных исследований Описание и характеристика использованных в исследованиях магнитов и устройств для обработки жидкости (стр. 4 из 7)

Противонакипный эффект зависит от состава воды, напряженности магнитного поля, скорости движения воды и продолжительности ее пребывания в магнитном поле и от других факторов.

При проектировании магнитных аппаратов с постоянными магнитами для обработки воды задаются такие данные: тип аппарата, eгo производитель­ность, индукция магнитного поля в рабочем зазоре или соот­ветствующая ей напряженность магнитного поля, скорость во­ды в рабочем зазоре, время прохождения водой активной зо­ны аппарата, магнитный сплав и размеры магнита.[2]

В сравнении с распространёнными методами умягчения воды (ионообменными, баромембранными) магнитную обработку отличают простота, дешевизна, безопасность, экологичность, низкие эксплуатационные расходы.

Остаточная индукция (Br)-значение магнитной индукции при уменьшении напряжённости магнитного поля от максимального значения до нуля.

Остаточная индукция использованных магнитов Br=0,38 Тл.

3. Коэрцитивная сила (Hсв)-значение напряжённости магнитного поля, необходимое для полного размагничивания образца.

Коэрцитивная сила использованных магнитов Hсв=240 кА/м

По величине коэрцитивной силы ферромагнитные материалы разделяют:

на мягкие магнитные материалы (до 800 А/м)

на жёсткие магнитные материалы

4. Структура.

По структуре магниты разделяют на изотропные (сухое прессование), анизотропные (сухое прессование) и анизотропные (мокрое прессование).

Использованные магниты имеют анизотропную структуру.

2.2.Условия магнитной обработки.

Условия магнитной обработки воды, выбранные нами, были обусловлены результатами предшествующих исследований, также проведённых в ОАО «НИИМЕСТПРОМ».

Опыты в предшествующих исследованиях проводились на установке, состоящей из стеклянного сосуда ёмкостью 1 л с механической мешалкой и термометром. Сосуд окружён снаружи симметрично четырьмя постоянными магнитами и помещён в термостат.

В различных опытах изменяли расположение полюсов магнитов и число оборотов мешалки (от 200 обор/мин до 490 обор/мин). Время обработки воды составляло 6 часов,время отстаивания-1 час.

При сопоставлении результатов опытов была выявлена тенденция положительного влияния магнитного поля на качество воды, обработанной в условиях:

-t 20°С,

-Т обработки 6 часов,

-Т отстаивания 1 час,

-n оборотов мешалки-200 мин-1.

Данные условия были приняты нами как оптимальные и использованы в дальнейших исследованиях.

2.3.Методики исследования воздействия постоянных магнитов.

В проведённых нами исследованиях мы изучали зависимость качества обработанной магнитом воды от концентрации железа в исходной воде-в первой серии опытов, и от количества постоянных магнитов-во второй.

Анализ всех вод выполнялся по следующим методикам:

1. Водородный показатель (pH).

Величина pH – один из важнейших показателей качества воды для определения ее стабильности, накипеобразующих и коррозионных свойств, прогнозирования химических и биологических процессов, происходящих в природных водах. Показатель концентрации водородных ионов. Его величина характеризует фон водной среды: от кислого до щелочного. В большинстве природных вод концентрация водородных ионов обусловлена лишь отношением концентраций свободной двуокиси углерода и карбонат-ионов. В этих случаях pH колеблется от 4,5 до 8,3. Для питьевой воды величина pH должна составлять от 6 до 9. Определяется на лабораторном pH-метре (электрометрически).

2. Взвешенные примеси.

Взвешенные твердые примеси, присутствующие в природных водах, состоят из частиц глины, песка, ила, суспендированных органических и неорганических веществ, планктона и различных микроорганизмов. Взвешенные частицы влияют на прозрачность воды.

Ход определения.

Фильтр (синяя лента) помещают предварительно в бюкс и высушивают с открытой крышкой в течение 2 ч при 105°C.Затем охлаждают бюкс в эксикаторе и, закрыв его крышкой, взвешивают на аналитических весах. Через подготовленный фильтр пропускают 100 мл анализируемой пробы. Фильтр помещают в тот же бюкс, в котором его взвешивали до фильтрования, высушивают 2 ч при 105°C, охлаждают в эксикаторе и, закрыв бюкс крышкой, снова взвешивают. Количество взвешенных веществ вычисляют по формуле:

х=

(мг/дм3), где

a-масса бюкса с фильтром (г);

b-масса пустого бюкса (г).

3. Общая минерализация (сухой остаток).

Общая минерализация (сухой остаток) – суммарное содержание всех найденных при химическом анализе воды минеральных веществ и растворённых в воде органических примесей. Влияет на вкус воды. Сухой остаток характеризует содержание минеральных и частично органических примесей, а именно тех, температура кипения которых заметно превышает 105° C, нелетучих с водяным паром и не разлагающихся при указанной температуре. ПДК для общей минерализации-не более 1000 мг/ дм3.

Ход определения.

В прокаленную охлаждённую и взвешенную фарфоровую чашку помещают 50 мл анализируемой пробы, предварительно профильтрованной. Воду выпаривают на водяной бане досуха. Затем переносят чашку с остатком в сушильный шкаф и высушивают в нём при 105°C до постоянной массы. Общую минерализацию вычисляют по формуле:

x=

(мг/дм3), где

a-масса чашки с сухим остатком (г);

b-масса пустой чашки (г).

4.Электропроводность.

Электропроводность – это численное выражение способности водного раствора проводить электрический ток. Электрическая проводимость воды зависит в основном от концентрации растворенных минеральных солей и температуры. Минеральную часть воды составляют ионы Na+, K+, Ca2+, Mg2+, Cl-, SO42+, HCO3-. Этими ионами и обусловливается электропроводность природных вод. Присутствие других ионов, например Fe3+, Fe2+, Mn2+, Al3+, NO3-, HPO42-, H2PO4-, не сильно влияет на электропроводность, если эти ионы не содержатся в воде в значительных количествах. По значениям электропроводности можно приближенно судить о минерализации воды. Определяется кондуктометрически.

5. Жёсткость.

Жесткость воды обусловливается наличием в воде ионов кальция (Са2+), магния (Mg2+), стронция (Sr2+), бария (Ва2+), железа (Fe3+), марганца (Mn2+), которые поступают в подземную воду из омываемых ею грунтов. Но общее содержание в природных водах ионов кальция и магния несравнимо больше содержания всех других перечисленных ионов – и даже их суммы. Поэтому под жесткостью понимают сумму количеств ионов кальция и магния – общая жесткость, складывающаяся из значений карбонатной (временной, устраняемой кипячением) и некарбонатной (постоянной) жесткости. Первая вызвана присутствием в воде гидрокарбонатов кальция и магния, вторая наличием сульфатов, хлоридов, силикатов, нитратов и фосфатов этих металлов.

Жесткость природных вод не является вредной для здоровья, а скорее наоборот, т.к. кальций способствует выводу из организма кадмия, отрицательно влияющего на сердечно-сосудистую систему. Однако повышенная жесткость делает воду непригодной для хозяйственно-бытовых нужд, поэтому, согласно ГОСТ 2874-82, норма общей жесткости составляет 7 мг-экв/л, а допустимая величина - 10 мг-экв/л. Значительное количество магния также ухудшает органолептические свойства воды. Использование жесткой воды в хозяйственно-бытовых и промышленных нуждах приводит к весьма нежелательным последствиям.

Ход определения общей жёсткости воды.

К 100 мл исследуемой пробы (в разбавлении 1:20 дистиллятом) приливают 5 мл буферного раствора (NH4OH+NH4Cl) и добавляют 0,5 г хромогена чёрного (красителя).Титруют трилоном Б до изменения окраски с розовой на синюю. Общую жёсткость воды вычисляют по формуле:

Ж=

(мг·экв/дм3)

Ход определения карбонатной жёсткости воды.

К 100 мл исследуемой пробы (в разбавлении 1:20 дистиллятом) приливают 2 мл раствора NaOH (8%-ного) и добавляют 0,5 г мурексида (красителя). Титруют трилоном Б до изменения окраски с бледно-розовой на фиолетовую. Карбонатную жёсткость воды вычисляют по формуле:

Ca2+=

(мг·экв/дм3), где

20,04-эквивалент (f)

f (Ca2+)=

Ход определения некарбонатной жёсткости воды.

Mg2+= (Ж─ Ca2+)·f (Mg2+), где

f (Mg2+)=

6.Железо.

Железо постоянно присутствует в поверхностных и подземных водах; концентрация его в этих водах зависит от геологического строения и гидрологических условий бассейна. При водоснабжении для питьевых и хозяйственных нужд высокое содержание железа в воде вызывает технические затруднения. Некоторые свойства и компоненты воды, например pH, карбонаты, двуокись углерода, растворённый кислород, сероводород и микроорганизмы, окисляющие или восстанавливающие железо, обуславливают присутствие железа в растворимой или нерастворимой форме. Железо общее измеряется с помощью колориметра. Его ПДК-не более 0,3 мг/л

7.Щёлочность.

Щелочностью воды называется суммарная концентрация содержащихся в воде анионов слабых кислот и гидроксильных ионов (выражена в ммоль/л),вступающих в реакцию при лабораторных исследованиях с соляной или серной кислотами с образованием хлористых или сернокислых солей щелочных и щелочноземельных металлов. Различают следующие формы щелочности воды: бикарбонатная (гидрокарбонатная), карбонатная, гидратная, фосфатная, силикатная, гуматная – в зависимости от анионов слабых кислот, которыми обусловливается щелочность. Щелочность природных вод, рН которых обычно < 8,35, зависит от присутствия в воде бикарбонатов, карбонатов, иногда и гуматов. Щелочность других форм появляется в процессах обработки воды.