Муниципальное общеобразовательное учреждение
«Лицей №10» г.Перми
Диофант. Диофантовы уравнения
Выполнила работу
Ильина Яна,
ученица 11 б класса
Руководитель
Золотухина Л. В,
учитель математики
высшей категории
Пермь, 2010
Содержание
Введение…………………………………………………………………….3
1. Диофант………………………………………………………………..…4
2. Числа и символы…………………………………………………………6
3. Диофантово уравнение………………………………………………..…8
4. Способы решения………………………………………………………..12
Заключение…………………………………………………………………15
Список литературы…………………………………………………………16
Введение
Сегодняшние школьники решают различные уравнения. В части С заданий ЕГЭ встречается интересное уравнение, которое называется Диофантово уравнение. В своих работах Диофант не только поставил проблему решения неопределённых уравнений в рациональных числах, но и дал некоторые общие методы их решения. Эти методы будут очень полезны для сегодняшних одиннадцатиклассников, которым предстоит сдавать экзамен по математике.
Диофант внес такой же огромный вклад в развитие математики, как и Архимед. Так, например, поступал Архимед: определяя площади эллипса, сегмента параболы, поверхности шара, объёмы шара и других тел, он применял метод интегральных сумм и метод предельного перехода, однако нигде не дал общего абстрактного описания этих методов. Учёным XVI–XVII веков приходилось тщательно изучать и перелагать по-новому его сочинения, чтобы выделить оттуда методы Архимеда. Аналогично обстоит дело и с Диофантом. Его методы были поняты и применены для решения новых задач Виетом и Ферма, т.е. в то же время, когда был разгадан и Архимед.
1. Диофант
Диофант представляет одну из наиболее трудных загадок в истории науки. Нам не известны ни время, когда он жил, ни предшественники его, которые работали бы в той же области. Труды его подобны сверкающему огню среди полной непроницаемой тьмы. Промежуток времени, когда мог жить Диофант, составляет полтысячелетия! Нижняя грань этого промежутка определяется без труда: в своей книге о многоугольных числах Диофант неоднократно упоминает математика Гипсикла Александрийского, который жил в середине II века до н. э. С другой стороны, в комментариях Теона Александрийского к «Альмагесту» знаменитого астронома Птолемея помещён отрывок из сочинения Диофанта. Теон жил в середине IV века н. э. Этим определяется верхняя грань этого промежутка. Итак, 500 лет!
Зато место жительства Диофанта хорошо известно — это знаменитая Александрия, центр научной мысли эллинистического мира.
Чтобы исчерпать всё известное о личности Диофанта, приведём дошедшее до нас стихотворение-загадку:
Прах Диофанта гробница покоит; дивись ей — и камень
Мудрым искусством его скажет усопшего век.
Волей богов шестую часть жизни он прожил ребёнком
И половину шестой встретил с пушком на щеках.
Только минула седьмая, с подругою он обручился.
С нею пять лет проведя сына дождался мудрец;
Только полжизни отцовской возлюбленный сын его прожил.
Отнят он был у отца ранней могилой своей.
Дважды два года родитель оплакивал тяжкое горе,
Тут и увидел предел жизни печальной своей.
Отсюда нетрудно подсчитать, что Диофант прожил 84 года. Однако для этого вовсе не нужно владеть искусством Диофанта! Достаточно уметь решать уравнение 1-й степени с одним неизвестным, а это умели делать египетские писцы ещё за 2 тысячи лет до н. э.
Но наиболее загадочным представляется творчество Диофанта. До нас дошло шесть книг из 13, которые были объединены в «Арифметику». Стиль и содержание этих книг резко отличаются от классических античных сочинений по теории чисел и алгебре, образцы которых мы знаем по «Началам» Евклида, его «Данным», леммам из сочинений Архимеда и Аполлония. «Арифметика», несомненно, явилась результатом многочисленных исследований, которые для нас остались совершенно не известны. Мы можем только гадать о её корнях и изумляться богатству и красоте её методов и результатов.
«Арифметика» Диофанта — это сборник задач (их всего 189), каждая из которых снабжена решением (или несколькими способами решения) и необходимыми пояснениями. Поэтому с первого взгляда кажется, что она не является теоретическим произведением. Однако при внимательном чтении видно, что задачи тщательно подобраны и служат для иллюстрации вполне определённых, строго продуманных методов. Как это было принято в древности, методы не формулируются в общем виде, а повторяются для решения однотипных задач.
2. Числа и символы
Диофант начинает с основных определений и описания буквенных символов, которые он будет применять.
В классической греческой математике, которая нашла своё завершение в «Началах» Евклида, под числом άριJμός — «аритмос» или «арифмос»; отсюда название «арифметика» для науки о числах) понималось множество единиц, т.е. целое число. Ни дроби, ни иррациональности числами не назывались. Строго говоря, никаких дробей в «Началах» нет. Единица считается неделимой и вместо долей единицы рассматриваются отношения целых чисел; иррациональности появляются как отношения несоизмеримых отрезков, например, число, которое мы теперь обозначаем √2, для греков классической эпохи было отношением диагонали квадрата к его стороне. Об отрицательных числах не было и речи. Для них не существовало даже никаких эквивалентов. Совершенно иную картину мы находим у Диофанта.
Диофант приводит традиционное определение числа как множества единиц, однако в дальнейшем ищет для своих задач положительные рациональные решения, причём называет каждое такое решение числом (άριJμός — «аритмос»).
Но этим дело не ограничивается. Диофант вводит отрицательные числа: он называет их специальным термином λει̃ψις — «лейпсис» — производное от глагола λει̃πω — «лейпо», что означает недоставать, нехватать, так что сам термин можно было бы перевести словом «недостаток». Кстати, так поступает известный русский историк науки И. Тимченко . Положительное число Диофант называет словом ΰπαρξις — «ипарксис», что означает существование, бытие, а во множественном числе это слово может означать имущество или достояние. Таким образом, терминология Диофанта для относительных чисел близка к той, которую употребляли в Средние века на Востоке и в Европе. Скорее всего, это было просто переводом с греческого на арабский, санскрит, латынь, а затем на различные языки Европы.
Заметим, что термин λει̃ψις — «лейпсис» — нельзя переводить как «вычитаемое», как это делают многие переводчики Диофанта, потому что для операции вычитания Диофант применяет совершенно иные термины, а именно άφελει̃ν — «афелейн» или άφαιρει̃ν — «афайрейн», которые являются производными от глагола άφαιρεω — «афайрео» — отнимать. Сам Диофант при преобразовании уравнений часто употребляет стандартное выражение «прибавим к обеим сторонам λει̃ψις».
Мы так подробно остановились на филологическом анализе текста Диофанта, чтобы убедить читателя, что мы не отступим от истины, если будем переводить термины Диофанта как «положительное» и «отрицательное».
Диофант формулирует для относительных чисел правило знаков:
«отрицательное, умноженное на отрицательное, даёт положительное, тогда как отрицательное на положительное даёт отрицательное, и отличительный знак для отрицательного есть
— перевёрнутая и укороченная (буква) ψ».Далее он пишет:
«После того как я тебе объяснил умножение, становится ясным и деление предложенных членов; теперь будет хорошо приступить к упражнениям над сложением, вычитанием и умножением таких членов. И положительные и отрицательные члены с различными коэффициентами прибавлять к другим членам, которые либо положительны, либо, равным образом, и положительны и отрицательны, и от положительных членов и других отрицательных отнимать другие положительные и, равным образом, положительные и отрицательные».
Заметим, что хотя Диофант ищет только рациональные положительные решения, в промежуточных выкладках он охотно пользуется отрицательными числами.
Мы можем, таким образом, отметить, что Диофант расширил числовую область до поля рациональных чисел, в котором можно беспрепятственно производить все четыре действия арифметики.
3. Диофантово уравнение
Определение - алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, имеющие число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или рациональные решения.
ax + by = 1
где а и b — целые взаимно простые числа
Взаимно простые числа, несколько целых чисел, таких, что общими делителями для всех этих чисел являются лишь + 1 и - 1. Наименьшее кратное попарно простых чисел равно их произведению.
имеет бесконечно много решений:
если x0 и у0 — одно решение, то числа
х = x0 + bn
у = y0-an