Смекни!
smekni.com

Электротехника — база электроники (стр. 3 из 3)

В 1940 г. во Всесоюзном электротехническом институте имени В. И. Ленина, была разработана конструкция самовозбуждаюшетося синхронного генератора (75 кВ - А) с возбуждением от селеновых выпрямителей, получившего широкое применение в послевоенные годы. С 1943 г. по инициативе А. Ф. Иоффе начинается изготовление, полупроводниковых термогенераторов. В то же время разрабатываются полупроводниковые терморезисторы, использующиеся. схемы теплового контроля и автоматики. В США налаживается производств'» детекторов из германия и кремния, применявши чел н радиолокационных установках (выпрямляющие свойства германия и кремния были обнаружены в середине 20-х — начале 30-х годов).

В послевоенные годы в нашей стране значительно увеличилось производство малогабаритных терморезисторов, фоторезисторов и вариаторов, которые получили широкое применение в автоматических устройствах управления и контроля. В 50-х годах были внедрены полупроводниковые зажигатели из карбида кремния, предназначенные для ртутных вентилей. Начинаются исследования полупроводниковых сплавов металлов — ZnSb, Mg2Sn, Mg2Pb, на основе которых были созданы термогенераторы, холодильники и микрохолодильники.

В конце 40-х годов были разработаны полупроводниковые триоды из германия, получившие название транзисторов (1948 г., Д. Бардин и. У. Браттейн, США). Так было положено начало транзисторной электроники. Эти триоды выгодно отличаются от электронных ламп малыми габаритами, меньшим потреблением энергии, надежностью действия. Например, средние размеры полупроводниковых диодов и триодов составляют 0, 015—0, 3 см3, тогда как средний размер приемно-усилительной лампы 500—100 см . Мощность, потребляемая транзистором, составляет 0, 001' Вт и менее, а аналогичные лампы только на накал расходуют до нескольких ватт.

Первые точечные транзисторы в нашей стране были изготовлены в 1949 г. (А. Красилов, С. Мадоян). В 1951—1953 гг. отечественные заводы начали массовое производство германиевых триодов и диодов, а в последующие годы — мощных германиевых выпрямителей. Но недостатки германиевых приборов, проявляющиеся при температурах свыше 50°С, заставили обратиться к кремниевым вентилям я триодам, выдерживающим температуру до 120—200°С.

В последующие десятилетия все шире применяются ферриты — ферромагнитные материалы, получаемые в результате химического соединения двухвалентных металлов (никель, марганец и окислы железа) или окислов металлов (цинк, кадмий и окислы железа). Ферриты с прямоугольной петлей гистерезиса используются для изготовления ячеек памяти и логических схем. Значительные преимущества отличают феррит-транзисторные ячейки, в которых сочетаются свойства ферритовых сердечников с усилительными свойствами транзисторов. Феррит-транзисторные ячейки применяются в устройствах вычислительной техники и автоматики.

Применение полупроводниковых приборов в электронике, автоматике, энергетике приобрело массовый характер. Все большее использование они находят в системах преобразования тока (выпрямление, инвертирование) и схемах управления мощными электроприводами. К ним относятся полупроводниковые диоды и тиристоры. Их преимущества: высокий КПД, долговечность и надежность, небольшие габариты, возможность регулирования тока и напряжения в широких пределах.

Мощные полупроводниковые диоды изготавливаются преимущественно из кремния и применяются в схемах выпрямления при напряжениях 200—4000 В и токах до 5000 А,

В качестве рабочего элемента в мощных управляемых тиристорах используют четырехслойные кристаллы кремния с чередующимися р- и «-областями. Первые приборы такого типа были описаны в 1956 г. Современные серийные тиристоры имеют воздушное или жидкостное охлаждение и рассчитаны на токи 2000 А н напряжение включения около 4000 В. Их быстрое распространение обусловлено значительными преимуществами перед тиратронами и другими ионными приборами, а также и транзисторами. Тиристоры не требуют подогрева, имеют малое радение прямого напряжения.

Одним из характерных направлений развития полупроводниковой электроники в последние десятилетия является интегральная микроэлектроника.

Начало микроэлектронике было положено в Англии в середине 40-х годов созданием тонкопленочных деталей. Однако широкое практическое применение микроминиатюризация получила только после создания транзистора»

Микроминиатюризация (уменьшение массы, габаритов, потребляемой мощности) в сочетании с повышением надежности, экономичности и возможности автоматизации производства изделий явилась важнейшим шагом на пути совершенствования радиоэлектронной аппаратуры.

Новейшим перспективным направлением микроминиатюризации явилось создание интегральных схем. Первые интегральные схемы были созданы в 1958 г. в США. Такими схемами называют микроминиатюрные функциональные узлы электронной аппаратуры, в которых элементы и соединительные проводники изготавливаются в едином технологическом цикле на поверхности или в объеме полупроводникового материала и имеют общую герметическую оболочку.

Серийный промышленный выпуск интегральных схем был начат в 1962 г. Переход к интегральным схемам позволяет комплексно решить ряд важнейших проблем: наряду с микроминиатюризацией, повышением экономичности и автоматизацией производства значительно повышаются эксплуатационные характеристики аппаратуры.

В качестве примера зависимости объема изделия от технологии его изготовления можно привести следующие цифры:

в изделиях широкого потребления с обычными вакуумными приборами в 100 см3 объема содержится одна деталь;

при замене ламп полупроводниковыми элементами одна деталь уже приходится всего лишь на 1 см3 объема;

применение микромодульного монтажа позволяет разместить в 1 см 10—20 деталей. Плотность монтажа в интегральных схемах составляет 300—1000 деталей в 1 см3. Например, в наручных электронно-цифровых часах в одном кристалле размещено 5000 транзисторов.

Одним из важнейших этапов в развитии микроэлектроники явилось создание в 70-х годах больших интегральных схем (БИС). Количество элементов в БИС достигает нескольких сотен тысяч при минимальных размерах микросхемы 2—3 мкм. Быстродействие БИС несравнимо с обычными схемами, оно измеряется миллиардными долями секунды.

На основе БИС оказалось возможным создание важнейших элементов современных электронных устройств — микропроцессоров (рис. 7.6) и микроЭВМ. Микропроцессор — управляющее цифровое устройство, выполненное по технологии больших интегральных схем (чаще на одном кристалле полупроводника) и способное осуществлять под программным управлением обработку различной информации, арифметические и логические операции. Общая структура микропроцессора почти не отличается от структуры центрального процессора малых ЭВМ.

Микропроцессор с запоминающим устройством вместе со средствами ввода-вывода данных называется микроЭВМ или компьютером.

Широчайшее применение микропроцессоры и микроЭВМ получили в 80-х годах в управлении производственными процессами, системах связи и транспорта, бытовых устройствах. По подсчетам специалистов применение микропроцессоров, в частности, а приборостроении уменьшает трудоемкость в 10 раз, стоимость в 5 раз, габариты и потребляемую энергию в 10—20 раз и на порядок повышает надежность изделий.

Предполагается, что к 2000 г. уровень интеграции микросхем повысится на порядок, и тогда размеры элементов в таких схемах будут соизмеримыми с размерами некоторых бактерий или молекул. Такие микросхемы со сверхвысокой степенью интеграции обеспечат заметное увеличение быстродействия электронных устройств

ПОСЛЕСЛОВИЕ

Изучение истории человеческого общества вообще и истории техники в частности позволяют простелить сложный взаимосвязанный и взаимообусловленный процесс становления и развития человека и техники. Человек создавал все новые и более совершенные средства труда, повышал производительность своего труда и накапливал научные знания и массу производимого продукта.

Передавая часть своих функций технике, он наделял многие технические устройства такими качествами, которые ранее были присуши только человеку. Механические, электромагнитные, электронные, лазерные, химические, биологические, информационные и другие системы позволяли человеку все более и более познавать мир и гармонию Природы, достичь поистине непредсказуемого: с одной стороны созданные человеком гигантские технические объекты обладают мощностями, соизмеримыми с геофизическими и космическими, способными уничтожить все живое на Земле, с другой — ресурсы планеты, катастрофически истощаясь, уже не в состоянии удовлетворять технические и энергетические потребности общества.

Во всех развитых странах разрабатываются новые технологии накопления, преобразования и экономии потребления энергии, идет поиск наиболее технически доступных, экологически безопасных томлив, внедряются более эффективные и энергосберегающие технологии, мысли ученых обращаются к другим видам источников энергии, и в первую очередь к Солнцу. Человечество уже ищет выход за пределы планеты.

Опасность ядерной, генной, экологической катастроф привела государства с различным общественным строем к попытке подняться выше своих социально-экономических различий во имя общечеловеческих интересов н ценностей. Глобальные проблемы встают во весь свой рост и порой отодвигают на второй план то, что еще вчера казалось главным и определяющим. Надежность и безопасность работы современных гигантов промышленности, сохранение и защита окружающей среды, комфортные и здоровые условия жизни людей всех стран и континентов — вот те проблемы, которые волнуют ныне все человечество. Именно эти потребности формируют социальный заказ современной науке и технике. Совершенно очевидно, что электротехнике и электронике принадлежит одна из ведущих ролей в ролей в реализации этого сопельного заказа.

Научно-технический прогресс остановить нельзя.

Академик А. Д. Сахаров в своей статье «Мир через полвека», отмечая стремительный «разбег» научно-технического прогресса та протяжении тысячелетий, писал: «Я глубоко убежден, однако, что огромные материальные перспективы, которые заключены в научно-техническом прогрессе, при всей их исключительной важности н необходимости, не решают все же судьбы человечества сами по себе. Научно-технический прогресс не принесет счастья, если не будет дополняться чрезвычайно глубокими изменениям социальной, нравственной и культурной жизни человечества. Внутреннюю духовную жизнь людей, внутренние импульсы юс активности трудней всего прогнозировать, но именно от этого зависит в конечном итоге и гибель, и спасение цивилизации».