Смекни!
smekni.com

3. геологических задач (стр. 7 из 22)

Второй тип излучателя направленного действия нашёл большее применение вследствие простоты конструкции и надежности. Основные его преимущества состоят в следующем: более высоком (в 3-10 раз), по сравнению с традиционными излучателями, отношении амплитуд S и Р волн; возможности возбуждения доминирующей в волновом пакете волны Стоунли; уменьшении влияния обсадной колонны при измерении упругих характеристик горных пород в обсаженных скважинах. К недостаткам поршневых излучателей следует отнести заниженные в 1,5-3 раза (в зависимости от частоты и угла раскрытия основного лепестка диаграммы направленности) амплитуды продольной волны по сравнению с излучателями со сферической диаграммой направленности.

Приёмники направленного действия в виде специальных механических конструкций практически не применяются, по крайней мере, не патентуются. Большинство фирм пошли путём построения измерительных зондов с антеннами приёмников, в которых каждый приёмный элемент выполнен из пьезокерамики в форме сферы или пустотелого цилиндра со сферической диаграммой направленности. Расстояние между приёмными элементами варьирует от 0,05 до 0,20 м, длина антенны - от 0,5 до 2,0 м, количество приёмников - от 4 до 16 [5,16,81,96 и др.]. Направленность приёмной антенны создаётся программами обработки сигналов, зарегистрированных от каждого приёмника [150].

Сочетание разночастотных и направленных излучателей, приёмных антенн (в том числе фазированных) позволяет получить максимально эффективные монопольные измерительные зонды АК. С их помощью в открытых и обсаженных скважинах получают волновые пакеты продольной, поперечной и Стоунли волн с максимально возможным отношением "сигнал-помеха". Для измерения параметров поперечной волны в низкоскоростных разрезах (vs<vж) востребованы дипольные (мультипольные) преобразователи.

Интенсивная разработка мультипольных преобразователей для скважинных приборов АК началась с 1980 г., когда экспериментально была доказана возможность измерения параметров поперечной волны в низкоскоростных неконсолидированных осадках [111]. Пик разработок пришёлся на середину 80-х годов, хотя патентование дипольных преобразователей продолжается до сих пор [128,145]. Принцип работы мультипольных преобразователей связан с созданием и приёмом антисимметричных колебаний и низкой чувствительностью к симметричным колебаниям ( рис. 4 , б). Это позволяет измерять значения скорости распространения поперечных (S) волн, значительно меньшие скоростей упругих волн, распространяющихся в жидкости, заполняющей скважину, и по корпусу скважинного прибора [112,113].

Основными типами дипольных преобразователей в приборах АК являются электродинамические [125] и пьезокерамические [80]. Реже предлагается изготавливать их из магнитострикционных материалов [91]. Эффективность дипольного преобразователя определяется соотношением дипольной и монопольной составляющих в общем сигнале. Монопольная компонента обусловлена неидеальной симметрией диполя и колебаниями, вызванными реакцией несущей конструкции (сигнал отдачи).

Идеальным диполем является излучатель, состоящей из двух пьезокерамических пластин, возбуждаемых противофазно [80]. Однако высокая добротность и малые относительные деформации пьезокерамических пластин не обеспечивают достаточную для приборов АК акустическую мощность излучения на низких (менее 3 кГц) частотах. Поэтому для возбуждения низкочастотных колебаний предложено конструировать диполи на основе электродинамических преобразователей, КПД которых ниже, чем у пьезокерамических. Построение магнитострикционного диполя основано на противоположной (по знаку) стрикции пермендюра и никеля. Принципиально такие диполи можно сконструировать, но строгую симметрию обеспечить трудно, и, следовательно, не удаётся добиться приемлемого соотношения амплитуд поперечной и Стоунли волн, распространяющихся с близкими скоростями.

Теоретически и на физических моделях показана возможность возбуждения антисимметричных колебаний мультипольными, в частности, квадрупольными ( рис. 4 , в) электроакустическими преобразователями [36,83,87]. Имеются также многочисленные патенты на эти преобразователи и зонды с ними, но сообщения об их применении в скважинах отсутствуют. Очевидно, преимущества квадрупольных преобразователей, обладающих явно выраженными по сравнению с монопольными преобразователями диаграммами направленности, не превалируют над их недостатками - сложностью конструкции и низким уровнем "сигнал/шум". В то же время положительный эффект применения системы ортогональных дипольных преобразователей для определения акустической анизотропии горных пород, в первую очередь, их трещиноватости, очевиден и получает в последнее время широкое распространение [100,109,124 и др.].

Применение дипольных преобразователей радикально расширило возможности АК для решения геологических и технических задач, поэтому в ближайшие годы следует ожидать их дальнейшего развития. В первую очередь должны появиться новые материалы, способные к большим деформациям и обладающие достаточно высоким КПД электроакустического преобразования, или конструкции, позволяющие увеличить мощность излучения диполя на низких (1-5 кГц) частотах. Это тем более важно, что теоретические предпосылки [26] и первый отечественный опыт исследований скважин дипольными зондами [25] свидетельствуют о более низкой мощности дипольных излучателей по сравнению с монопольными. Безусловно, актуальными будут конструкции дипольных приёмников, обеспечивающих приём полезных сигналов в двух ортогональных направлениях и обладающих достаточно высокими отношениями "сигнал/шум" Если удастся создать дипольные приёмники с резко выраженными диаграммами направленности, может возникнуть задача увеличения количества приёмников, расположенных в одной плоскости, до 6-8 с целью создания объёмного изображения скважины (технология Imager).

В последние годы получены единичные патенты на акустические изоляторы для скважинных приборов АК, что указывает на исчерпанность возможных вариантов их конструкций. В то же время необходимость измерений параметров волн, распространяющихся со скоростями, меньшими 1500-2000 м/с, вновь привлекает внимание конструкторов к решению этой задачи. Из двух возможных схем построения акустических изоляторов - гибкой и жёсткой конструкций - в последнее время преобладала первая Гибкие изоляторы, представляющие собой отрезок каротажного кабеля, использованы в серийных скважинных приборах АКШ, АК-П, АКМ. В опытных образцах прибора АКАС (ВО ИГИРГИ) акустический изолятор представляет собой цепь, собранную из отдельных колец. Такие изоляторы подавляют волну-помеху, распространяющуюся по корпусу скважинного прибора, в ущерб центровке измерительного зонда. Наоборот, жёсткие изоляторы позволяют поднять уровень полезных сигналов за счёт центровки прибора в скважине и развязки электроакустических преобразователей с корпусом зонда [66,116 и др ] Опыт применения в приборе АВАК-7 разночастотных монопольных и дипольных излучателей для преимущественного возбуждения волн разных типов свидетельствует о новых возможностях жёстких изоляторов. Данным прибором зарегистрированы значения скорости поперечной волны, равные 1000 м/с, и волны Стоунли, равные 900 м/с, на длинах измерительных зондов, близких к 1,5 м. Из-за отсутствия единства мнений по вопросу акустической развязки электроакустических преобразователей можно надеяться на появление новых технических решений этого простого, но важного узла скважинных приборов АК

К настоящему времени полностью стабилизировались конструкции центрирующих устройств измерительных зондов. Приборы для открытых скважин центрируют двумя-тремя рессорными фонарями, которые обеспечивают положение прибора на оси скважины, если диаметр последней изменяется в диапазоне 140-400 мм (реже до 500 мм). Иногда для обеспечения равномерного прижатия рессор к стенке скважины при больших изменениях её диаметра рессоры поддерживают изнутри подпружиненными штангами (тягами, рычагами) [104]. Как правило, в зарубежных приборах рессорные фонари выполнены отдельными съёмными узлами, длина которых составляет 0,9-1,1 м. Стандартными центраторами скважинных приборов акустической цементометрии и сканеров АК-цементометрии стали рычажные устройства, аналогичные применяемым в отечественных приборах гамма-гамма-цементометрии и толщинометрии СГАТ и СГДТ. Центрирование приборов с помощью этих устройств обеспечивает измерение внутреннего радиуса обсадной колонны с погрешностью ±0,7 мм [68]. Новыми элементами измерительных зондов стали резиновые или пластиковые кольца и рёбра, выступающие над поверхностью охранного кожуха и предотвращающие непосредственное соприкосновение приборов со стенкой скважины на уступах, границах каверн и других участках ствола.

2.5. Передача первичных данных из скважинных приборов в компьютеризированные цифровые каротажные лаборатории (телеметрические линии связи)

На рубеже 80-90-х годов произошёл переход ГИС в новое качественное состояние. Он базируется на одновременном проведении многих измерений комплексными и/или комбинированными скважинными приборами, обработке первичных данных в реальном времени средствами каротажной лаборатории и более глубокой многовариантной обработке тех же данных в стационарных условиях, решении целого ряда совершенно новых для ГИС задач, представлении результатов обработки и геологической интерпретации в псевдотрёхмерной форме, облегчающей их восприятие геологическими службами. Основу такого перехода составили процедуры, связанные с обеспечением качества получаемых первичных данных. К ним относятся оцифровка первичных данных в скважинных приборах, передача их с приемлемой скоростью в наземные обрабатывающие и регистрирующие устройства (каротажные лаборатории), повышение достоверности переноса метрологических характеристик скважинных приборов от момента их поверки до проведения измерений, упрощение процедур первичного редактирования, транспортировки и обработки готовых (в том числе, увязанных с глубиной скважины) оцифрованных данных средствами современной вычислительной техники.