Тротиловый эквивалент
Широкое распространение получила оценка работоспособности (мощности) ВВ в виде тротилового эквивалента. Это – относительная величина, выражающая работоспособность данного ВВ через показатель работоспособности тротила. За этот эталон принимается тротил с плотностью 1,5 г/см3 и с теплотой взрыва 4186 кДж/кг (1000 ккал/кг).
Исходя из определения, тротиловый эквивалент dT можно выразить уравнением:
, (3.18)где X и T - индексы, которые относятся соответственно к исследуемому ВВ и к тротилу;
- идеальная работоспособность; - идеальный термодинамический коэффициент по-лезного действия взрыва;Qвзр – удельная теплота взрыва, кДж/кг.
В другой, адекватной по физическому смыслу, трактовке тротиловый эквивалент определяется как отношение масс тротила mТ и данного ВВ mХ, обладающих равной работоспособностью (
), и описывается выражением . (3.19)Если мерой работоспособности служит величина энергии генерируемой в воздухе ударной волны, то исходя из уравнения (3.19) тротиловый эквивалент может быть охарактеризован как отношение масс тротила и исследуемого ВВ, генерирующих ударные волны равной интенсивности.
Экспериментально тротиловый эквивалент чаще всего находят путем измерения параметров ударной волны в воздухе. Находят такие массы тротила, которые генерируют ударные волны такой же интенсивности, как единицы масс исследуемых ВВ. Выбор именно этого метода объясняется тем, что процесс формирования ударной волны в воздухе в наибольшей мере приближается к идеальному адиабатическому расширению продуктов взрыва, производящему уплотнение воздуха.
Ударная воздушная волна и ее параметры
Ударная волна (УВ) – наиболее мощный поражающий фактор при взрыве. Она образуется за счет колоссальной энергии, выделяемой в центре взрыва, что приводит, как было показано, к наличию огромной температуры и давления. Раскаленные продукты взрыва при стремительном расширении производят резкий удар по окружающим слоям воздуха, сжимают их до значительного давления и плотности, нагревая до высокой температуры. Такое сжатие происходит во все стороны от центра взрыва, образуя фронт ударной воздушной волны (УВВ). Вблизи центра взрыва скорость распространения УВВ в несколько раз превышает скорость звука. По мере движения скорость ее распространения падает. Снижается и давление во фронте. В слое сжатого воздуха, называемого фазой сжатия УВВ (рисунок 3.12), наблюдаются наиболее разрушительные последствия.
Рисунок 3.12 - Фазы и фронт ударной воздушной волны (УВВ) |
Параметры воздушных ударных волн рассчитываются по закону подобия взрывных волн, суть которого состоит в том, что при взрыве зарядов сферической формы параметры УВ являются функциями только массы ВВ или ее энергетического эквивалента и расстояния от геометрического центра взрыва и не зависят от детонационных параметров ВВ . Этот закон выведен из теории точечного взрыва при следующих допущениях: энергия при взрыве заряда выделяется мгновенно и сосредоточенно, а возникающие в воздухе сферические УВ распространяются без диссипативных потерь, их параметры уменьшаются с увеличением расстояния от центра взрыва только вследствие увеличения поверхности волны и соответствующего уменьшения в ней плотности энергии. На основании этих допущений выведены конкретные виды функций параметров УВ от массы заряда и расстояния:
1. Избыточное давление определяется разностью между фактическим давлением воздуха в данной точке и атмосферным давлением (Ризб=Рф-Рат=DР). При проходе фронта ударной волны избыточное давление воздействует на человека со всех сторон
. (3.20)2. Скоростной напор воздуха (динамическая нагрузка, т.е. поток энергии) обладает метательным действием. Совместное воздействие этих двух параметров УВВ приводит к разрушениям объектов и жертвам
. (3.21)3. Импульс избыточного давления
. (3.22)4. Длительность фазы сжатия
. (3.23)5. Длина ударной волны
, (3.24)где
- размерные коэффициенты;m – масса ВВ, кг;
R – расстояние от центра заряда, м;
r – радиус заряда, м.
Заряды имеют сферическую форму.
В выражениях (3.20)-(3.24) коэффициенты
отражают энергетические эквиваленты единицы массы ВВ. Соответственно они являются индивидуальными характеристиками каждого ВВ. Численно они равны соответствующему параметру волны, измеренному при взрыве 1 кг ВВ на расстоянии 1 м от центра заряда.Если же массу ВВ заменить на ее энергетический эквивалент, например, на величину hnQвзр, т.е. на ту часть энергии взрыва, которая переходит в ударную волну, то коэффициенты
становятся постоянными величинами, не зависящими от вида ВВ. В таком виде формулы часто используют для решения обратной задачи: нахождения показателя hn и величины идеальной работоспособности ВВ по измеренным параметрам ударной волны.На практике зависимости выражают через так называемые приведенные величины, например, приведенные расстояния
. Тогда параметры ударной волны становятся функциями приведенных расстояний. Справедливость выражений (3.20)-(3.23) была проверена М.А. Садовским для реальных зарядов тротила [15]. Им было установлено, что зависимость для импульса ударной волны соблюдается с удовлетворительной точностью, а избыточное давление более точно описывается выражением типа полинома: . (3.25)С помощью формул (3.20) и (3.25) можно определить тротиловый эквивалент исследуемого ВВ. На рисунке 3.13 приведены кривые изменения давления в ударной волне в зависимости от приведенного расстояния при взрыве тротила на поверхности земли и в воздухе.
1 – взрыв на поверхности земли; 2 – взрыв в воздухе Рисунок 3.13 - Зависимость давления в воздушной ударной волне от приведенного расстояния |
Большой интерес представляют ударные воздушные волны в ближней зоне действия взрыва как с точки зрения безопасности (при проведении аварийно-спасательных работ), так и при практическом использовании, например, при разделке судов или других конструкций на металлолом [16]. В этом случае зачастую взрывные работы приходится вести в стесненных условиях: в доках, вблизи конструкций и сооружений, внутри отсеков кораблей и т.п. Поэтому важно правильно оценить действие взрывов на окружающие сооружения и конструкции, организовать их защиту и рассчитать предельно-допустимый эффективный заряд. Для этого необходимо знать параметры поля взрыва, прежде всего в ближней зоне действия.
В работе [17] показано, что в ближней к заряду зоне, т.е. на расстоянии R=(1…15)r0 (r0 - радиус заряда), геометрический закон подобия выполняется только для одного и того же взрывчатого вещества при его постоянной плотности r0. На малых расстояниях от заряда на параметры УВВ влияет начальная скорость продуктов взрыва. При этом скорость фронта УВВ сферического заряда D (м/с) рассчитывается по формуле [17]:
, (3.26)
где A, n – постоянные величины, принимающие определенные значения в различных интервалах аргумента
; - расчетный аргумент (безразмерная величина); - полная энергия взрыва заряда, ккал;