Смекни!
smekni.com

«Химические технологии энергонасыщенных материалов и изделий» (стр. 13 из 31)

R - расстояние от места взрыва, м;

QV – удельная теплота взрыва, ккал/кг;

m – масса заряда, кг.

Зависимость (3.26) уточнена авторами Л.А. Шушко, Ю.А. Каганер в работе [18] на основании обработки данных целого ряда испытаний и собственных экспериментов, в которых исследовались сферические заряды различных ВВ (бризантных и инициирующих, индивидуальных и смесевых, в твердом состоянии и жидких). При этом диапазон начальных плотностей ВВ охватывал все виды зарядов (насыпные, прессованные и сплавы) и составлял от 0,4 до 1,68 г/см3. В результате исследований получены следующие значения постоянных зависимости (3.26): А=271, n=2/3 в интервале 0,005 £ x £ 0,07 и А=112, n=1 при
0,07 < x £ 0,2.

Параметры ударной воздушной волны, вычисленные по этому соотношению, наиболее близки к полученным для литого заряда ТГ 50/50 при r0=1,67 г/см3, D=7700 м/с и QV=1140 ккал/кг. Уточненная зависимость (3.26) приведена на рисунке 3.14 и принимает вид

. (3.27)

Таким образом, зная параметры УВВ в ближней зоне и при распространении на значительные расстояния, можно не только произвести расчет разрушающего действия взрыва, но и определить безопасные расстояния до конструкций защитных сооружений.

Воздействие ударной воздушной волны на человека

При взрыве образуется очаг поражения с ударной волной и световым излучением. В очаге взрыва можно выделить три сферических зоны (рисунок 3.15) [14].

1 – зависимость

(x); 2 – зависимость D1(x), рассчитанная
по формуле Садовского [15]

Рисунок 3.14 - Зависимость D1(x) для сосредоточенного заряда

Рисунок 3.15 - Очаг поражения при взрыве ВВ

Зона I детонационной волны находится в пределах облака взрыва, радиус которого определяется как

,

где m – масса продуктов взрыва, кг.

В пределах зоны I избыточное давление можно считать постоянным и равным 1,7…2,0 МПа.

Зона II – зона действия продуктов взрыва, которая охватывает всю площадь разлета продуктов взрыва ВВ в результате их детонации. Радиус зоны II в 1,7 раза больше радиуса зоны I, т.е. R2=1,7R1, а избыточное давление по мере удаления уменьшается до 0,3…0,4 МПа.

Зона III – зона действия УВВ. Здесь формируется фронт УВВ.

Воздействие УВВ на человека может быть косвенным или непосредственным. При косвенном поражении УВВ, разрушая постройки, вовлекает в движение огромное количество твердых частиц, осколков стекла и других предметов массой до нескольких грамм при скорости до 35 м/с. Так, при величине избыточного давления порядка 60 кПа плотность таких опасных частиц достигает 4500…5000 шт./м2. Наибольшее число пострадавших – жертвы косвенного воздействия УВВ.

Непосредственное поражение УВВ людей приводит к травмам:

· крайне тяжелые (обычно несовместимы с жизнью) наблюдаются при воздействии избыточного давления величиной свыше 100 кПа;

· тяжелые (сильная контузия организма, поражение внутренних органов, потеря конечностей, сильное кровотечение из носа и ушей) возникают при избыточном давлении от 60 до 100 кПа;

· средние (контузия, повреждение органов слуха, кровотечение, вывихи) имеют место при избыточном давлении от 40 до 60 кПа;

· легкие (ушибы, вывихи, временная потеря слуха, общая контузия) наблюдаются при избыточном давлении от 20 до 40 кПа.

Эти же параметры УВВ приводят к разрушениям, характер которых зависит от нагрузки, создаваемой УВВ, и реакций предмета на действия этой нагрузки. Поражения объектов, вызванные УВВ, можно характеризовать степенью их разрушений в зависимости от расстояния (зоны разрушений).

Зона полных разрушений является зоной, в которой восстановить разрушенные объекты невозможно. Массовая гибель всего живого. Занимает до 13 % всей площади очага поражения. Здесь полностью разрушены строения, до 50 % противорадиационных укрытий, до 5 % убежищ и подземных коммуникаций. Сплошных пожаров не возникает из-за сильных разрушений, срыва пламени ударной волной, разлета воспламенившихся обломков и засыпки их грунтом. Эта зона характеризуется величиной избыточного давления более 50 кПа.

Зона сильных разрушений занимает площадь до 10 % очага поражения. Строения сильно повреждены, убежища и коммунальные сети сохраняются, 75 % укрытий сохраняют свои защитные свойства. Есть местные завалы, зоны сплошных пожаров. Зона характеризуется избыточным давлением от 30 до 50 кПа.

Зона средних разрушений наблюдается при избыточном давлении от 20 до 30 кПа, занимает площадь до 15 % очага поражения. Строения получают средние разрушения, а защитные сооружения и коммунальные сети сохраняются. Могут быть местные завалы, участки сплошных пожаров, массовые санитарные потери незащищенного населения.

Зона слабых разрушений характеризуется избыточным давлением от 10 до 20 кПа и занимает до 62 % площади очага поражения. Строения получают слабые повреждения (разрушения перегородок, дверей, окон), могут быть отдельные завалы, очаги пожаров, а у людей – травмы.

Рельеф местности оказывает влияние на распространение УВВ: на склонах холмов, обращенных в сторону взрыва, давление выше, чем на равнинной местности (при крутизне склона 30 градусов давление на нем на 50 % выше), а на обратных склонах - ниже (при крутизне склона 30 градусов – в 1,2 раза). В лесных массивах избыточное давление может оказаться на 15 % выше, чем на открытой местности, но по мере углубления в лес скоростной напор уменьшается. Метеоусловия оказывают влияние только на слабую УВВ, т.е. с избыточным давлением менее 10 кПа. Летом наблюдается ослабление УВВ по всем направлениям, а зимой – ее усиление, особенно в направлении ветра. Дождь и туман оказывают влияние на УВВ при избыточном давлении до
30 кПа. Снегопад не снижает давления УВВ.

Кумулятивное действие взрыва

Действие взрыва можно усилить в определенном направлении, например, в сторону разрушаемого объекта. Такое направленное действие взрыва основано на явлении кумуляции (cumulatio – увеличивать, суммировать), заключающемся в том, что заряды, имеющие на поверхности выемку, обеспечивают в направлении последней повышенный разрушительный эффект (впервые явление кумуляции наблюдалось в 1864 г. русским военным инженером М.М. Божевским).

Если заряд 1 (рисунок 3.16) взрывчатого вещества имеет выемку 2 в виде конуса, то при взрыве заряда 1 газообразные продукты, движущиеся от поверхности конуса по нормали, образуют сходящийся поток, имеющий вид мощной тонкой струи. Сущность явления кумуляции состоит в концентрации, направлении энергии взрыва и создании уплотненного газового потока в области кумулятивной выемки 2. В результате столкновения и сжатия продуктов взрыва кумулятивный поток приобретает высокую плотность, скорость, температуру и давление.

Одним из интереснейших физических эффектов, реализующихся за счет создания условий, обеспечивающих кумуляцию энергии, является формирование высокоскоростных кумулятивных струй при взрыве осесимметричного заряда ВВ с выемкой, облицованной тонкой металлической оболочкой. Благодаря большой скорости (до 10 км/с) такие кумулятивные струи обладают высокой пробивной способностью, определяемой (в соответствии с гидродинамической теорией проникновения) их длиной и плотностью материала.

1 – заряд ВВ; 2 – выемка; 3 - детонатор Рисунок 3.16 - Схема действия кумулятивного заряда

Изменяя форму и размеры заряда ВВ и кумулятивной облицовки, а также материал облицовки, можно реализовать различные режимы кумуляции и варьировать пробивное действие кумулятивных зарядов в широких пределах. Наибольшим пробивным действием обладают кумулятивные заряды, формирующие высокоградиентные кумулятивные струи из достаточно высокоплотных материалов, обладающих хорошей пластичностью. При рациональном выборе конструктивных параметров таких зарядов и прецизионной технологии их изготовления, глубина пробития стальной преграды может составлять свыше десяти диаметров заряда, что близко к ее предельному значению. Дальнейший рост пробивного действия заряда связан с поиском новых нетрадиционных путей управления процессами кумуляции и реализацией новых физических эффектов.

Одним из таких путей, позволяющих «вторгнуться» в физические механизмы процессов, определяющих эффективность функционирования кумулятивного заряда, с целью изменить характер их протекания в нужном направлении, является использование различных вариантов электромагнитных воздействий. В зависимости от решаемой задачи такие воздействия могут приводить как к увеличению, так и к снижению пробивного действия кумулятивного заряда. Данные работы по явлению электромагнитных воздействий на эффект кумуляции проводились в МГТУ им. Баумана (г. Москва) совместно с институтом гидродинамики им. М.А. Лаврентьева (г. Новосибирск) [20]. Электромагнитные воздействия, осуществляемые на различных стадиях функци-онирования кумулятивного заряда, представлены на рисунке 3.17.

Рисунок 3.17 - Варианты электромагнитных воздействий управления кумулятивным эффектом взрыва [20]

К числу воздействий, направленных на снижение пробивного действия, относятся создание аксиального магнитного поля в облицовке кумулятивного заряда непосредственно перед его подрывом (см. рисунок 3.17, воздействие 1,), пропускание мощного электрического тока по кумулятивной струе (воздействие 2) и создание поперечного к направлению движение струи магнитного поля в материале проводящей преграды (воздействие 3). На повышение пробивной способности кумулятивного заряда направлены «мягкое» токовое воздействие на струю (воздействие 4), а также варианты создания продольного низкочастотного (воздействие 5) и высокочастотного (воздействие 6) магнитных полей в области деформирования струи в полете до ее взаимодействия с преградой. Воздействия 2, 4, 5 и 6 на сформировавшуюся кумулятивную струю ориентированы на управление процессом ее деформирования и последующего разрушения. Воздействие 1 позволяет влиять на процесс схлопывания облицовки и формирование кумулятивной струи в начальной стадии.