Смекни!
smekni.com

«Химические технологии энергонасыщенных материалов и изделий» (стр. 7 из 31)

· макроуровневые срезы и разрушения на неоднородностях структуры заряда;

· разрыв сплошности течения вблизи пустот, на границах кристаллов и включений;

· дробление и впрыск вещества в полости материала;

· макрокумулятивные эффекты в порах;

· внутрикристаллические дефекты.

Совокупность структурных неоднородностей в веществе – источников локальной генерации тепла – представлена схемой на рисун-
ке 2.4.

Рисунок 2.4 - Механизм локальной генерации тепла [6]

Превалирующая роль того или иного механизма локальной генерации тепла до настоящего времени не выяснена. Условия начала разложения в очаге могут быть достигнуты при любом механизме генерации тепла в зависимости от физико-механической структуры и свойств ВВ, его пористости, совокупности термокинетических характеристик и характера действующей нагрузки. Однако эффективность этих механизмов не равнозначна и по проведенным оценкам может быть в порядке возрастания представлена следующим образом (рисунок 2.5): деформационный разогрев – ударно-волновой разогрев – фрикционное тепловыделение – вязкопластический локальный разогрев.

Рисунок 2.5 - Сравнение эффективности элементарных
процессов инициирования [6]

Необходимо отметить, что достаточный для начала химической реакции разогрев в очаге еще не гарантирует распространения процесса в объёме и, следовательно, создания предпосылок формирования самоподдерживающейся инициирующей ударной волны и ее перехода в детонационную. Последнее возможно только в тех случаях, когда создаются необходимые условия для суммирования энергии элементарных процессов, когда развитие процесса в очагах приобретает коллективный характер и роль газодинамики становится преобладающей. В результате возрастает влияние фронтальных процессов и формируется локальная зона максимума давления и массовой скорости, а именно ударно-волновой комплекс с энерговыделением в непосредственной близости от фронта, способный при определенных условиях перестроиться в стационарный, детонационный.

3 Физические основы термодинамики взрывчатых веществ

3.1 Энергетические характеристики

Критериями действия взрыва являются количество тепла, выделяемое при взрыве, объём образующихся газообразных продуктов и температура взрыва.

Для взрывчатых веществ количество тепла, выделяющееся при взрыве, является очень важной характеристикой, определяющей возможность использования того или иного ВВ в соответствующих условиях. Чем больше выделилось тепла, тем выше температура продуктов взрыва, выше давление, а следовательно, и существеннее воздействие продуктов взрыва на окружающую среду. В реальных условиях применения ВВ не вся теплота, выделяющаяся при взрыве, переходит в механическую работу. Часть ее расходуется на нагревание оболочки, в которую заключено ВВ, и окружающей среды.

Количество тепла, выделяющееся при взрыве 1 кг ВВ, называется теплотой взрыва. Теплота взрыва является важной энергетической характеристикой, определяющей работоспособность ВВ. Количество тепла, выделяемое в результате процесса, протекающего с участием газов, зависит от того, происходит процесс в постоянном или переменном объёме. Полагают, что при детонации ВВ химическая реакция успевает закончиться раньше, чем начнется расширение газообразных продуктов взрыва, и выделение тепла происходит при постоянном
объёме.

Для сравнения энергетических возможностей различных ВВ пользуются величиной QV, то есть теплотой взрыва, определяемой при постоянном объёме. Теплота взрыва некоторых взрывчатых веществ QV приведена в таблице 3.1.

Таблица 3.1 – Теплота взрыва некоторых ВВ

Взрывчатое вещество Теплота взрыва QV, ккал/кг

Азид свинца

367

Гремучая ртуть

414

Тротил

1000

Пикриновая кислота

1030

Тетрил

1090

Гексоген

1300

ТЭН

1400

Нитроглицерин

1490

Теплота взрыва определяется экспери­ментально или расчетным путем. Экспериментальное определение теплоты взрыва производится в калориметрической установке по количеству тепла, поглощенного массой установки при взрыве внутри нее определенного количества ВВ [5].

В основе вычисления теплоты взрыва лежит открытый в 1840 году русским химиком Г.И. Гессом основной закон термохимии, который представляет собой частный случай закона сохранения энергии. В соответствии с этим законом тепловой эффект химической реакции не зависит от того, какие были промежуточные вещества при протекании реакции, а зависит только от состава исходных веществ и конечных продуктов реакции.

Согласно закону Гесса теплота взрыва QV равна алгебраической разности между теплотой образования продуктов взрыва и теплотой образования взрывчатого вещества:

QV = Q1 - Q2,

где Q1 - теплота образования всех продуктов взрыва, равная сумме теплот отдельных продуктов взрыва;

Q2 - теплота образования взрывчатого вещества.

Теплота образования различных веществ приведена в специальных таблицах [22]. Продукты взрывного превращения могут быть определены методом газового анализа или рассчитаны теоретически.

Точно определить состав продуктов взрыва методом газового анализа довольно трудно, так как газовому анализу подвергаются уже охлажденные продукты взрыва, а состав охлажденных продуктов в силу ряда обстоятельств может отличаться от первоначального состава, соответствующего максимальной температуре и давлению взрыва. Поэтому чаще всего состав продуктов взрыва определяют расчетным путем [9].

При этом исходят из следующих соображений. Подавляющее большинство ВВ представляет собой органические вещества, состоящие из атомов углерода, водорода, кислорода и азота. Состав продуктов взрыва определяется главным образом соотношением горючих составляющих (углерода, водорода) и кислорода.

Приведем некоторые особенности расчета теплоты взрыва. Все ВВ условно делят на 3 группы:

· к первой группе относят ВВ с количеством кислорода, достаточным для полного сгорания горючих элементов (например, нитроглицерин);

· ко второй группе - ВВ с количеством кислорода, недостаточным для полного сгорания, но достаточным для полного газообразования (например, гексоген);

· к третьей группе - ВВ с количеством кислорода, недостаточным для полного газообразования (например, тротил).

Руководствуясь общими закономерностями физической химии и термодинамики, можно достаточно точно подсчитать состав продуктов взрыва. Для этого необходимо составить уравнение реакции взрывного превращения. Приближенные реакции взрывного превращения для ВВ первой и второй групп могут быть составлены достаточно просто. Считают, что в результате взрыва ВВ, относящихся к первой группе, образуются лишь продукты полного сгорания CO2 и H2O. С учётом этого реакцию взрывного превращения, например, нитроглицерина можно представить следующим образом:

2C3H5(ONO2)3=6CO2+5H2O+0,5O2+3N2. (3.1)

Для взрывчатых веществ второй группы пользуются правилом, согласно которому кислород, входящий в молекулу взрывчатого вещества, сначала окисляет весь углерод до окиси углерода, а затем оставшаяся часть кислорода распределяется поровну между водородом и образовавшейся окисью углерода, в результате чего образуются вода и углекислый газ. Руководствуясь этим положением, можно написать уравнение взрывного превращения, например, гексогена:

C3H6O6N6=3CO+1,5O2+3H2+3N2=1,5CO+1,5CO2+1,5H2O+1,5H2+3N2. (3.2)

Для третьей группы ВВ составить уравнение реакции несколько труднее. Зная реакцию взрывного превращения и состав продуктов взрыва, нетрудно подсчитать их объём V0, приведенный к нормальным условиям (при 0 оС и давлении 760 мм.рт.ст.) и отнесенный к килограмму ВВ:

, (3.3)