Смекни!
smekni.com

Экспериментальное закономерностей разрушения при быстром распространении и ветвлении трещин 01. 02. 06 «Динамика, прочность машин, приборов и аппаратуры» 01. 02. 04 «Механика деформируемого твердого (стр. 2 из 5)

СОДЕРЖАНИЕ РАБОТЫ

Во введении показана актуальность рассматриваемой проблемы, сформулированы цели и задачи работы, ее научная новизна и практическая значимость, приведены выносимые на защиту положения.

В первой главе содержится обзор литературных данных по быстрому распространению и ветвлению трещины. Рассмотрены теоретические модели на основе механики разрушения и физики твердого тела, экспериментальные исследования на образцах и конструкциях.

Анализ теоретических и экспериментальных работ E. Yoffe, H. Shardin, F. Kerkhof, С.В. Серенсена, В.М. Финкеля, K. Ravi-Chandar и W.G. Knauss, J. Fineberg, A.S. Kobayashi, И.Н. Бедия, О.Б. Наймарка, О.А. Плехова, С.В. Уварова по исследованию ветвления трещин в модельных и конструкционных материалах показывает, что параметром, контролирующим переход трещины от прямолинейного распространения к режиму ветвления, является критическое значение скорости распространения трещины V* (предельная скорость), причем V*<VR (VR – скорость волны Рэлея), и равна не определенной части VR, а зависит от материала. Существует два фундаментально различных подхода для объяснения механизма ветвления трещины при достижении V*. Неустойчивость по Е. Yoffe, В.М. Финкелю, J. Fineberg, И.Н. Бедию, О.Б. Наймарку, О.А. Плехову, С.В. Уварову зависит в основном от инерционной перестройки поля напряжения и является, следовательно, функцией скорости трещины, связанной с характерными скоростями волн в материале. Однако, экспериментальные факты свидетельствуют, что между V* и характерными скоростями волн в материале корреляция отсутствует, V* сильно зависит от состава материала, экспериментально измеренные значения V* значительно ниже порога Yoffe.

В моделях F. Kerkhof, K. Ravi-Chandar и W.G. Knauss, A.S. Kobayashi, основанных на эволюции зоны процесса трещинообразования, неустойчивость связана с изменением поведения материала около вершины трещины при достижении V*, которая зависит от свойств материала в пределах зоны процесса трещинообразования. В соответствии с этими моделями ветвление трещины происходит в результате волнового взаимодействия между микроветвями и магистральной трещиной и является процессом скорее стохастичным, тогда как экспериментально наблюдается его детерминированность.

Таким образом, в настоящее время можно считать до конца не установленным физический механизм перехода трещины от прямолинейного распространения к ветвлению, объясняющий существование экспериментально наблюдающейся предельной скорости распространения трещины V*.

При натурных гидравлических испытаниях труб и сосудов из углеродистых сталей в работе А. Даффи, Г. Хана была установлена зависимость характера их разрушения от скорости распространения трещины; в качестве критерия распространения продольных трещин в цилиндрических сосудах давления принято номинальное окружное разрушающее напряжение sр.

Вышеприведенный анализ современного состояния проблемы явился обоснованием для постановки цели и задач диссертационной работы. В качестве параметра, контролирующего переход трещины от прямолинейного распространения к режиму ветвления, в работе принято V*; установление закономерностей ветвления основано на исследовании эволюции зоны процесса разрушения; в качестве критерия распространения продольных трещин в тонкостенных цилиндрических оболочках принято sр.

Во второй главе приведен анализ масштабных разрушений крупногабаритных технических устройств (магистрального газопровода и нефтяных резервуаров), эксплуатировавшихся в Республике Саха (Якутия).

а) б)

Рис. 1. Разрушения технических устройств

Разрушения резервуара РВС-700 (с. Амга, РС(Я)) (рис. 1, а) и магистрального газопровода (Берге-Якутск) (рис. 1, б) произошли путем хрупкого разрушения по механизму отрыва, переходящим на местах искривления траектории и остановки трещины к вязкому разрушению по механизму среза. Трещины в теле трубы газопровода и резервуара разветвились, что привело к фрагментации конструкций и осколочному характеру разрушения. Ликвидация последствий аварий потребовала затрат значительных материальных и временных ресурсов. А повреждение другого резервуара РВС-700 (с. Хонуу, РС(Я)), которое произошло в результате развития одиночной трещины по вязкому механизму и ее дальнейшей остановки, не привело к разрушению объекта, произошел разлив 22% хранящегося нефтепродукта, и осталась возможность возобновления эксплуатации резервуара при соответствующих ремонтных работах.

Таким образом, масштабные разрушения объектов нефтяной и газовой промышленности с катастрофическими последствиями происходят при распространении трещины с ветвлением. Характер разрушения зависит от скорости распространения трещины: продвижение трещины с высокой скоростью по механизму отрыва приводит к осколочному разрушению объектов, а трещина, распространяющаяся с небольшой скоростью по механизму среза, останавливается, вызывая лишь повреждение объекта.

В третьей главе приведены описание методик по исследованию быстрого распространения и ветвления трещин, характеристики исследованных материалов, анализ экспериментальных данных для изучения макроскопических закономерностей разрушения.

В работе разработаны две разновидности методик в зависимости от различных условий реализации ветвления трещин в модельных и конструкционных материалах (рис. 2).

В качестве модельного материала был выбран ПММА. Выбор данного материала обусловлен несколькими причинами: во-первых, ПММА является широко используемым материалом при проведении экспериментов по разрушению, доступен, существует большое количество экспериментальных данных для сравнения; во-вторых, он прозрачен, что позволяет визуально оценить и инструментально измерить поперечный размер зоны процесса разрушения. Проведены испытания на растяжение пластин (плоских образцов) из ПММА с одним боковым надрезом на разрывной машине INSTRON 4483. С целью получения различных уровней sр в вершины надрезов наносились инициаторы трещины с различными радиусами закругления. Пластины нагружались со скоростью 1 мм/мин до разрушения при температурах +20 0C и –40 0C, регистрировалась разрушающая нагрузка Fр и проводились исследования закономерностей разрушения.

Номинальное разрушающее напряжение sр определяется по формуле для осевого растяжения пластины с надрезом :

,

где b – ширина пластины; l – длина надреза; t – толщина пластины.

Рис. 2. Методики реализации быстрого распространения и ветвления трещин в модельных и конструкционных материалах

Быстрое распространение и ветвление трещин в конструкционном материале была реализовано в серии натурных испытаний цилиндрических сосудов давления, изготовленных из углеродистой стали 45. Сосуды были выбраны по следующим причинам: во-первых, исследования ветвления трещин в тонкостенных цилиндрических оболочках ранее не проводились; во-вторых, благодаря своей компактности, сосуды давления дают широкие возможности для проведения натурных испытаний. На центральную часть каждого сосуда наносился поверхностный дефект в виде продольного надреза различной длины. Нагружение сосуда осуществлялось внутренним давлением в результате расширения замерзающей воды, при достижении критического значения внутреннего гидростатического давления сосуд разрушался в результате инициации трещины от искусственного дефекта. По итогам испытаний были получены данные о разрушающем давлении, температуре внутри и вне сосуда, деформации стенок, и проведены исследования закономерностей разрушения.

Для регистрации экспериментальных данных в процессе нагружения сосуда был разработан специальный автоматизированный измерительный комплекс на базе двух измерительных систем: компьютерно-измерительной системы «Аксамит 6.25», информационно-измерительной системы «СИИТ 2», - и персонального компьютера (рис. 3). Комплекс позволяет производить измерение и регистрацию внутренней и внешней температур сосуда, давления внутри сосуда и деформации его стенок в режиме реального времени.

Для автоматической регистрации данных в процессе эксперимента написана программа на языке Turbo Pascal 7.1 c механизмом адаптивного опроса. Для обработки и анализа полученных данных написана программа на языке Delphi 7 в среде Windows.

Рис. 3. Схема автоматизированного измерительного комплекса.

Номинальные разрушающие напряжения sр для сосудов давления вычисляются по эмпирическому соотношению, предложенному А. Даффи, Г. Ханом для тонкостенных стальных цилиндрических оболочек с поверхностными дефектами:

,

где MF – поправка Фолиаса; l – длина надреза; R – радиус сосуда; t – толщина стенки сосуда; d – глубина поверхностного дефекта;

– усредненное напряжение пластического течения материала, определяемое экспериментально через механические характеристики σT и σB. Под sр для сосудов давления подразумеваются номинальные окружные разрушающие напряжения.