Смекни!
smekni.com

Проблемно – ивная работа по алгебре и началам анализа (стр. 2 из 2)

Поскольку мы знаем, что график есть гипербола, достаточно найти прямые, к которым приближаются ее ветви (асимптоты), и еще несколько точек.

Найдем сначала вертикальную асимптоту. Функция не определена там, где 2х+2=0, т.е. при х=-1. Стало быть, вертикальной асимптотой служит прямая х=-1.

Чтобы найти горизонтальную асимптоту, надо посмотреть, к чему приближаются значения функций, когда аргумент возрастает (по абсолютной величине), вторые слагаемые в числителе и знаменателе дроби

относительно малы. Поэтому

.

Стало быть, горизонтальная асимптота – прямая у=3/2.

Определим точки пересечения нашей гиперболы с осями координат. При х=0 имеем у=5/2. Функция равна нулю, когда 3х+5=0, т.е. при х=-5/3.

Отметив на чертеже точки (-5/3;0) и (0;5/2) и проведя найденные горизонтальную и вертикальную асимптоты, построим график (рис.4).

рис. 4

Вообще, чтобы найти горизонтальную асимптоту, надо разделить числитель на знаменатель, тогда y=3/2+1/(x+1), y=3/2 – горизонтальная асимптота.

2. Дробно-рациональная функция

Рассмотрим дробную рациональную функцию

,

у которой числитель и знаменатель - многочлены соответственно n-й и m-й степени. Пусть дробь - правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и при том единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

Если:

,

где k1 ... ks – корни многочлена Q (x), имеющие соответственно кратности m1 ... ms, а трёхчлены соответствуют парам сопряжения комплексных корней Q (x) кратности m1 ... mt дроби вида

называют элементарными рациональными дробями соответственно первого, второго, третьего и четвёртого типа. Тут A, B, C, к – действительные числа; m и м - натуральные числа, m, м>1; трёхчлен с действительными коэффициентами x2+px+q имеет мнимые корни.

Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

График функции

получаем из графика функции 1/xm (m~1, 2, …) с помощью параллельного переноса вдоль оси абсцисс на │k│ единиц масштаба вправо. График функции вида

легко построить, если в знаменателе выделить полный квадрат, а затем осуществить соответствующее образование графика функции 1/x2. Построение графика функции

сводится к построению произведения графиков двух функций:

y=Bx+C и

Замечание. Построение графиков функции

где a d-b c¹0,
,

где n - натуральное число, можно выполнять по общей схеме исследования функции и построения графика в некоторых конкретных примерах с успехом можно построить график, выполняя соответствующие преобразования графика; наилучший способ дают методы высшей математики.

Пример 1. Построить график функции

.

Выделив целую часть, будем иметь

.

Дробь

изобразим в виде суммы элементарных дробей:

.

Построим графики функций:

После сложения этих графиков получаем график заданной функции:

(рис. 5)

рис. 5

Рисунки 6, 7, 8 представляют примеры построения графиков функций

и
.

Пример 2. Построение графика функции

:

(1);
(2);
(3);
(4)

рис. 6

Пример 3. Построение графика графика функции

:

(1);
(2);
(3);
(4)

рис. 7

Пример 4. Построение графика функции

:

(1);
(2);
(3);
(4).

рис. 8

3. Ещё один приём построения графиков

График функции y=1/x можно построить несколько иначе. Нарисуем график функции у=x. Заменим каждую ординату величиной, ей обратной, и отметим соответствующие точки на рисунке. Получим график у=1/x (рис.1).

Рис.1

Нарисованная картина показывает, как маленькие (по абсолютной величине) ордината первого графика превращается в большие ординаты второго и, наоборот - большие ординаты первого в маленькие ординаты второго. Точки с ординатами, равными 1 (и - 1), остаются на месте.

Этот приём "деления" графиков бывает полезен всегда, когда у нас есть график у=f(x), а нам нужно понять, как ведёт себя функция y=1/f(x) (рис.2).

рис.2

Заключение

При выполнении реферативной работы:

- уточнила свои понятия дробно-линейной и дробно-рациональной функций:

Определение 1.

Дробно-линейная функция – это функция вида

, где х – переменная, a, b, c, и d – заданные числа, причем с≠0 и bc-ad≠0.

Определение 2.

Дробно-рациональная функция – это функция вида

, где n<m.

- сформировала алгоритм построения графиков этих функций;

- приобрела опыт построения графиков таких функций, как:

;

- научилась работать с дополнительной литературой и материалами, производить отбор научных сведений;

- приобрела опыт выполнения графических работ на компьютере;

- научилась составлять проблемно – реферативную работу.

Литература

1) Крамор В.С.. Повторяем и систематизируем школьный курс алгебры и начала анализа. – М.: Просвещение, 1990г.

2) Вирченко Н.А., Ляшко И.И., Швецов К.И. Справочник. Графики функций. – Киев: «Наукова Думка», 1979г.

3) Макарычев Ю.Н., Миндюк Н.Г. Алгебра – 8 класс. Дополнительные главы к школьному учебнику. – М.: Просвещение, 1998г.

4) Гельфанд И.М., Глаголева Е.Г., Шноль Э.Э.. Функции и графики (основные приемы). – М.: Издательство МЦНМО, 2004г.

5) Никольский С.М., Потапов М.К., Решетников Н.Н., Шевкин А.В. Алгебра и начала анализа: учебник для 11 класса.