Смекни!
smekni.com

Методические указания Курс: Физиология человека и животных (стр. 10 из 18)

простагландины - образуются во многих органах и тканях, оказывают местное сосудорасширяющее действие;

• углекислота - расширяет сосуды мозга, кишечника, скелетной мускулатуры;

• молочная и пировиноградная кислоты - оказывают местный вазодилятаторный эффект.

Нервная регуляция сосудистого тонуса. Нервная регуляция сосудистого тонуса осуществляется вегетативной нервной системой. Сосудосуживающий эффект преимущественно оказывают волокна симпатического отдела вегетативной (автономной) нервной системы, а сосудорасширяющее - парасимпатические и, частично, симпатические нервы. Сосудосуживающее действие симпатических нервов не распространяется на сосуды головного мозга, сердца, легких и работающих мышц. Сосуды этих органов при возбуждении симпатической нервной системы расширяются. Следует также отметить, что не все парасимпатические нервы являются вазодилятаторами, например, волокна парасимпатического блуждающего нерва суживают сосуды сердца.

Сосудосуживающие и сосудорасширяющие нервы находятся под влиянием сосудодвигательного центра. Вазомоторный или сосудодвигательный центр - это совокупность структур, расположенных на различных уровнях ЦНС и обеспечивающих регуляцию кровообращения. Структуры, входящие в состав сосудодвигательного центра, расположены, в основном, в спинном и продолговатом мозге, гипоталамусе, коре больших полушарий. Сосудодвигательный центр состоит из прессорного и депрессорного отделов.

Депрессорный отдел снижает активность симпатических сосудосуживающих влияний и, тем самым, вызывает расширение сосудов, падение периферического сопротивления и снижение артериального давления. Прессорный отдел вызывает сужение сосудов, повышение периферического сопротивления и давления крови.

Активность нейронов сосудодвигательного центра формируется нервными импульсами, идущими от коры больших полушарий головного мозга, гипоталамуса, ретикулярной формации ствола мозга, а также от различных рецепторов, особенно, расположенных в сосудистых рефлексогенных зонах.

1.3.4. Регуляция системного кровообращения

Под регуляцией кровообращения понимают совокупность процессов, обусловливающих изменение основных параметров кровообращения, направленных на обеспечение той или иной приспособительной деятельности.

Параметрами кровообращения являются:

• величина кровяного давления;

• линейная скорость кровотока;

• объемная скорость кровотока;

• время кругооборота крови.

Основным из них является давление крови, т. К. именно оно определяет, в конечном итоге, процесс кровообращения. Поэтому рассматривая регуляцию системного кровообращения, следует обратить внимание, прежде всего, на регуляцию кровяного давления.

Поддержание постоянства артериального давления осуществляется но принципу саморегуляции, для обеспечения которой формируется функциональная система. Полезным приспособительным результатом данной функциональной системы является такой уровень артериального давления в организме, который обеспечивает нормальное течение метаболических процессов в тканях. В крупных артериях оно равно 120/80 мм рт. ст. Такая величина давления крови в крупных сосудах обеспечивает уровень гидростатического давления крови в капиллярах, необходимый для создания нормальных условий транскапиллярного обмена.

Величина кровяного давления зависит от следующих факторов:

• тонуса сосуда, определяющего величину его просвета;

• сопротивления току крови;

• массы циркулирующей крови;

• вязкости крови;

• работы сердца.

Изменение любого из этих факторов может привести к изменению величины кровяного давления.

Изменения уровня кровяного давления могут возникать при раздражении экстеро- и интерорецепторов, но особое значение в регуляции кровяного давления имеют барорецепторы сосудистых рефлексогенных зон.

Физиологические свойства и особенности сосудистых барорецепторов.

1. Барорецепторы обладают подчеркнутой спецификой, т. Е. они реагируют на колебания давления в строго определенных пределах. Здесь проявляется закон градуальности силы, т. Е. определенные группы рецепторов включаются в действие лишь при давлении определенной величины. Большинство барорецепторов реагируют на колебания давления в диапазоне от 70 до 140 мм рт. ст.

2. Микроэлектродная регистрация электрической активности барорецепторов позволила выявить пачечный характер импульсации, связанной с повышением давления крови в аорте и крупных артериях во время систолы сердца.

3. При быстром увеличении давления даже небольшой его прирост ведет к выраженному изменению импульсации. Медленное нарастание давления даже на большие величины ведет к меньшему изменению импульсации. Следовательно, чем круче нарастает давление, тем больший прирост импульсации наблюдается в сосудистых барорецепторах.

4. Сосудистые барорецепторы обладают способностью увеличивать импульсацию в геометрической прогрессии на одинаковую величину прироста артериального давления в зависимости от его исходного уровня. Например, на прирост давления на 10 мм рт. ст. в диапазоне 130 – 140 мм рт. ст. формируется прирост частоты импульсации на 5 имп/с. В то же время на прирост давления на те же 10 мм, но в диапазоне 180 – 190 мм рт. ст. барорецептор увеличивает импульсацию на 25 имп/с.

5. Сосудистые барорецепторы воспринимают изменяющееся давление в своем диапазоне. Если рецепторы находятся в зоне постоянного давления, то они перестают на него реагировать в результате развития адаптации. Адаптированные барорецепторы снова начинают функционировать, как только попадают в зону изменяющегося давления.

Возбуждение от барорецепторов сосудов направляется в ЦНС, прежде всего, в сосудодвигательный центр, гипоталамус, кору. На основе информации об отклонении константы кровяного давления формируется функциональная система, работа которой направлена на восстановление константы. Это может быть достигнуто включением различных аппаратов реакции: изменения ширины просвета сосудов (особенно артериол), регионального перераспределения крови, изменения работы сердца, изменения массы циркулирующей крови, ее депонирования, изменения вязкости, изменения скорости кровотока, процессов кровообразования и кроверазрушения. Одновременно происходит включение гормональной регуляции. При недостаточности саморегуляции включаются элементы поведенческой регуляции, что в конечном итоге позволяет нормализовать величину кровяного давления, т. Е. возвратить его к исходной константной величине.

1.4. Дыхание

1.4.1.

Внешнее дыхание

Внешнее дыхание осуществляется благодаря изменениям объема грудной клетки и сопутствующим изменениям объема легких. Во время вдоха объем грудной клетки увеличивается, а во время выдоха - уменьшается. В дыхательных движениях участвуют:

1. Дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха.

2. Респираторный отдел, представленный альвеолами. В легких имеется три типа альвеолоцитов (пневмоцитов), выполняющих разную функцию. Альвеолоциты второго типа осуществляют синтез липидов и фосфолипидов легочного сурфактанта. Общая площадь альвеол у взрослого человека достигает 80-90 м2, т.е. примерно в 50 раз превышает поверхность тела человека.

1.4.1.1. Внутриплевральное и внутрилегочное давление

Внутриплевральное давление, или давление в герметично замкнутой плевральной полости между висцеральными и париетальными листками плевры, в норме является отрицательным относительно атмосферного. При открытых верхних дыхательных путях давление во всех отделах легких равно атмосферному. Перенос атмосферного воздуха в легкие происходит при появлении разницы давлений между внешней средой и альвеолами легких. При каждом вдохе объем легких увеличивается, давление заключенного в них воздуха, или внутрилегочное давление, становится ниже атмосферного, и воздух засасывается в легкие. При выдохе объем легких уменьшается, внутрилегочное давление повышается и воздух выталкивается из легких в атмосферу. Внутриплевральное давление обусловлено эластической тягой легких или стремлением легких уменьшить свой объем. При обычном спокойном дыхании внутриплевральное давление ниже атмосферного: в инспирацию - на 6-8 см вод. ст., а в экспирацию - на 4-5 см вод. ст. Прямые измерения показали, что внутриплевральное давление в апикальных частях легких ниже, чем в прилегающих к диафрагме базальных отделах легких. В положении стоя этот градиент практически линейный и не изменяется в процессе дыхания. Важным фактором, влияющим на эластичность и растяжимость легких, является поверхностное натяжение жидкости в альвеолах. Спадению альвеол препятствует антиателектатический фактор, или сурфактант, выстилающий внутреннюю поверхность альвеол, препятствующий их спадению, а также выходу жидкости на поверхность альвеол из плазмы капилляров легкого. Синтез и замена поверхностно-активного вещества - сурфактанта происходит довольно быстро, поэтому нарушение кровотока в легких, воспаление и отеки, курение, острая кислородная недостаточность (гипоксия) или избыток кислорода (гипероксия), а также различные токсические вещества, в том числе некоторые фармакологические препараты (жирорастворимые анестетики), могут снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах. Все это ведет к их ателектазу, или спадению. В профилактике и лечении ателектазов определенное значение имеют аэрозольные ингаляции лекарственных средств, содержащих фосфолипидный компонент, например лецитин, который способствует восстановлению сурфактанта.

1.4.1.2. Вентиляция легких и легочные объемы