Смекни!
smekni.com

Влияние магнитного поля (стр. 2 из 5)

Предлагается новая гипотеза о механизме возникновения магнитного поля Земли и установка для экспериментальной проверки.

На рис. 1 изображена схема Солнце-Земля. Земля (З) вращается вокруг своей оси N-S с угловой скоростью ?. Земля имеет магнитное поле, северный полюс которого находится на южном географическом полюсе. Чтобы получить магнитное поле такого направления, вокруг земного шара, в плоскости перпендикулярной оси вращения Земли, должен существовать устойчивый токовый слой с током IЗ. Назовем его током Земли. Следовательно, над поверхностью Земли должен существовать проводящий слой, по которому должен замыкаться ток IЗ. Такой слой существует – это ионосфера.

Рассмотрим каким образом может возникануть направленный ток IЗ в ионосфере. Солнце, в результате ядерных реакций протекающих в нем, излучает в окружающее пространство огромное количество заряженных частиц больших энергий (энергия частиц солнечного ветра ?1027...1029 эрг/с) – так называемый солнечный ветер. По составу солнечный ветер содержит, главным образом, протоны, электроны, немного ядер гелия, ионов кислорода, кремния, серы, железа [1]. Частицы образующие солнечный ветер, обладающие массой и зарядом, увлекаются верхними слоями атмосферы в сторону вращения Земли. Таким образом, вокруг Земли образуется направленный поток электронов, движущихся в сторону вращения Земли. Электрон – это заряженная частица, а направленное движение заряженных частиц есть не что иное, как электрический ток. За направление тока принято направление противоположное движению электронов, которое совпадает с направлением тока IЗ. Таким образом, существует ток IЗ, вызванный направленным круговым движением частиц солнечного ветра, увлекаемых круговым движением Земли. В результате наличия тока IЗ возбуждается магнитное поле Земли ФЗ.

Относительно Земли солнечный ветер представляет собой поток заряженных частиц постоянного направления, а это не что иное, как электрический ток. Назовем его током Солнца IС. Согласно определению направления тока он направлен в сторону, противоположную движению отрицательно заряженных частиц, т.е. от Земли к Солнцу.

Рассмотрим взаимодействие тока Солнца IС с возбужденным магнитным полем земли. В результате такого взаимодействия на Землю действует вращающий момент МЗ, направленный в сторону вращения Земли. Таким образом, Земля относительно солнечного ветра (IС) проявляет себя аналогично двигателю постоянного тока с самовозбуждением. Источником энергии (генератором) в данном случае является Солнце.

Следует отметить дополнительно, что магнитный поток, вызванный током солнечного ветра IС, пронизывает вращающийся вместе с Землей поток раскаленной лавы внутри нее. В результате взаимодействия поля IС и потока раскаленной лавы в ней наводится электродвижущая сила, под действием которой течет ток, который так же создает магнитное поле. Вследствие этого магнитное поле Земли является результирующим полем от взаимодействия тока IС и тока лавы.

Поскольку и магнитное поле, и вращающий момент, действующий на землю, зависят от тока Солнца, а последний от степени солнечной активности, то при увеличении солнечной активности должен увеличиваться вращающий момент, действующий на Землю и увеличиваться скорость ее вращения.

Реально существующая картина магнитного поля Земли зависит не только от конфигурации токового слоя, но и от магнитных свойств земной коры, а так же от относительного расположения магнитных аномалий. Здесь можно провести аналогию с контуром с током при наличии ферромагнитного сердечника и без него. Известно, что ферромагнитный сердечник не только меняет конфигурацию магнитного поля, но и значительно усиливает его.

Токовый слой Земли постоянно подпитывается электронами солнечного ветра. Таким образом, в результате наличия свободного токового слоя, обусловленного электронами солнечного ветра, земной шар вместе с атмосферой и ионосферой, в настоящее время должен иметь отрицательный некомпенсированный заряд.

Токовый слой Земли, в значительной степени, определяет протекание электрических процессов в атмосфере (грозы, полярные сияния, огни «святого Эльма»). Замечено, что при извержении вулканов значительно активизируются электрические процессы в атмосфере. Данное явление можно объяснить следующим. При извержении вулкана выбрасывается столб раскаленных газов (плазмы). Конвективное движение раскаленных газов замыкает токовый слой ионосферы с поверхностью Земли. Таким образом, появляется ток утечки, который активизирует электрические процессы при извержениях.

Предложенная гипотеза, в противовес теории токовых слоев в жидком ядре, может быть проверена на практике. Подтверждение предложенной гипотезы позволит уточнить и расширить наши знания о механизме магнитного поля Земли и других планет, позволит объяснить природу сил и моментов, поддерживающих вращение Земли вокруг своей оси.

Рис. 2. Схема экспериментальной установки:

Iз – токовый слой земли Земли;

Iк – ток в искусственном параллельном контуре;

ПЗ – поверхность Земли;

ДЛЭ – длинная линия электропередачи;

СК – соединитель концов линии с токовым слоем;

ИП – измерительный прибор.

Для экспериментальной проверки гипотезы предлагается создать искусственный контур, расположенный параллельно токовому слою Земли (рис. 2). В качестве параллельного контура можно использовать длинную линию электропередачи, идущую, преимущественно, в направлении восток-запад. Концы длинной линии должны быть соединены или приближены к токовому слою Земли. В качестве соединителей предполагается использовать столб плазмы, например, струю газов реактивного двигателя или воздушные шары, соединенные проводником с концами длинной линии.

Таким образом, предполагается зарегистрировать измерительным прибором величину и направление тока в искусственном параллельном контуре.

Практическое подтверждение высказанных предположений позволит объяснить взаимосвязь электромагнитных процессов в системе Солнце-Земля и обеспечит возможность разработки мощных энергетических установок использующих энергию Солнца.

Если бы пришлось создавать энциклопедию рекордов, то нейтронные звезды вошли бы в нее как обладатели самых мощных магнитных полей во Вселенной. По этому параметру они превзошли возможности лучших физических лабораторий, в которых пока получены поля, не большие 10 Гс. Нейтронным звездам уступают белые карлики (10" Гс), с ними не могут соперничать даже черные дыры звездных масс, вблизи которых напряженность магнитного поля не превышает 10'¦ Гс.

В современной литературе в качестве характерной напряженности магнитного поля на поверхности нейтронных звезд обычно приводят величину 10'^ Гс. Цифра внушительная; кубический сантиметр пустоты, содержащей такое поле, весил бы на Земле 40 г! Невольно вспоминается ?пустышка¦ Рэдрика Шухарта, которую с трудом поднимали два человека'. Но поля напряженностью 10'^ Гс для нейтронных звезд, по-видимому, не рекорд. В последние годы появились данные, свидетельствующие в пользу существования нейтронных звезд, на поверхности которых магнитное поле в сотни раз мощнее. В таких полях решаю-

' С т руга ц кие А. и Б. Пикник на обочине.? Аврора, 1972, ¦ 7, с. 29.

щую роль начинают играть квантово-релятивистские эффекты.

Существование столь сильных полей ставит целый ряд новых задач как для астрофизики, так и для физики.

ПОЧЕМУ У НЕЙТРОННЫХ ЗВЕЗД ДОЛЖНЫ БЫТЬ СИЛЬНЫЕ МАГНИТНЫЕ ПОЛЯ?

Ответ звучит необычно: по той же причине, по которой магнитные поля нейтронных звезд должны быть очень слабыми.

Нейтронные звезды образуются в результате катастрофического сжатия (коллапса) обычных звезд, исчерпавших источники термоядерной энергии. Звездное вещество представляет собой раскаленную плазму с высокой электропроводностью, В такой плазме силовые линии магнитного поля ?приклеены¦ к частицам, т. е. двигаются вместе с плазмой (это называется "вмороженностью¦ магнитного поля). При сжатии звезды общее число силовых линий, пронизывающих звезду (поток магнитного поля), сохраняется. Следовательно, при сжатии увеличивается число силовых линий, приходящееся на единицу площади сечения звезды, т. е. растет напряженность магнитного поля. Очевидно, напряженность поля нарастает обратно пропорционально

Рекордсмены магнитных полей

квадрату радиуса звезды. В этом смысле магнитное поле при сжатии увеличивается.

Однако если мы будем измерять напряженность магнитного поля на некотором расстоянии от сжимающейся звезды, то обнаружим уменьшение поля. Это легко понять, если вспомнить, что напряженность поля на некотором расстоянии от системы токов прямо пропорциональна ее магнитному дипольному моменту, который в данном случае есть произведение магнитного потока, пронизывающего звезду, на ее радиус (для простоты вычислений примем его равным 7 км). Очевидно, при таком сжатии магнитное поле на поверхности усилится в 10 млрд раз (попутно отметим, что дипольный момент уменьшится в 100 тыс. раз, а квадрупольный ? в 10 млрд раз). Так как на поверхности Солнца средняя напряженность поля равна-1 Гс, то для образовавшейся нейтронной звезды это поле будет равно 10¦ Гс.

Полученная оценка ? весьма приближенная, хотя бы уже потому, что из звезды типа Солнца нейтронной звезды не ?сдела-

Изменение магнитного поля при коллапсе звезды. Начальный радиус звезды К;), конечный ? К. Поле на поверхности звезды возрастает от величины Во до величины В (нейтронная звезда). В некоторой пробной точке А, удаленной на расстояние Кд, напряженность поля, наоборот, падает от величины В^ к величине Вд.

хранением потока дипольный момент звезды уменьшается прямо пропорционально ее радиусу. Итак, нейтронная звезда должна обладать очень малым магнитным ди-польным моментом!