Смекни!
smekni.com

Кунсткамера вселенной (стр. 3 из 6)

Всего наша Галактика содержит свыше 100 млрд. звезд—больше 20 звезд на каждого человека, живущего на Земле. Десятками и сотнями миллиардов звезд характеризуется численность звездного «населения» и других галактик.

Кроме звезд, в галактиках много газа с примесью пыли — несве­тящегося межзвездного вещества, которое образует темные облака. Имеются такие облака и в нашей Галактике. Они загораживают удаленные звезды, и наблюдателю кажется, что звезд в этом месте нет. Такие участки неба называют «угольными мешками». Межзвездное вещество препятствует астрономическим исследо­ваниям. Но ведь преодоление препятствий и составляет основную задачу любой науки.

АДРЕС ВО ВСЕЛЕННОЙ

Ты посылаешь письмо другу. На чистом конверте записываешь адрес: сначала город, потом улицу, номер дома. А можно ли записать наш с тобой адрес в бескрайних просторах Вселенной? Оказывается, можно, поскольку Вселенная структурна.

Наш общий дом — планета Земля. Это понятно. А улица? Улицей можно считать место, где расположилось Солнце и его «дети» — окрестные планеты. Стало быть, наша улица — пла­нетная система у звезды по имени Солнце. Ну а город? Мы только что сравнивали с городом множество звезд, образующих Галактику. Это и есть город, в котором «проживает» Солнце.

Подобно звездам, группирующимся в «звездные города», отдельные галактики тоже группируются во всеобъемлющую систе­му галактик — Сверхгалактику, которую иначе называют Метага­лактикой. Вот и получается наш адрес во Вселенной:

Метагалактика

Галактика

Солнце

Планета Земля.

Единицей измерения меж­звездных и межгалактических расстояний служит световой год. Световой год — расстояние, ко­торое луч света проходит за год. А распространяется свет, как известно, со скоростью 300 тыс. км/с. Один световой год составляет округленно 9 триллионов 460 млрд. км.

Расстояния между галактика­ми фантастически велики. От ближайшей к нам соседней спи­ральной галактики — туман­ности из созвездия Андромеды — свет идет около.2 млн. лет.

По сравнению с такими чудо­вищными расстояниями размеры каждой отдельной галактики оказываются несколько скром­нее. Наша Галактика, например, имеет в поперечнике меньше 100 тыс. световых лет. Форма нашей Галактики в целом, так же как и других галактик, напоминает двояковыпуклую линзу, или, еще проще, две тарелки, сложенные краями вместе, а донышками наружу. Лист бумаги, зажатый между тарелками, дает наглядное представление об особенно богатой звездами галакти­ческой плоскости. Толщина Галактики меньше ее поперечника при­мерно в 12 раз.

Косвенным путем в галактической плоскости нашей Галактики, как и во многих других, обнаружены тянущиеся от ядра к периферии слегка закрученные спиральные сгущения звезд — спиральные ветви.

В центре Галактики расположено ядро с поперечником в 5 тыс. световых лет. Это, пожалуй, наименее изученная и наиболее таинственная область Галактики. Мы очень мало знаем о составе и структуре ядра, протекающих в его недрах процессах.

На древних географических картах в необследованных местах помещали надпись «terra incognita» — «земля неведомая». Так и для современных астрономов ядро Галактики тоже терра-инкогнита. Здесь скажут свое веское слово исследователи будущего.

Наше Солнце находится в одном из спиральных рукавов почти точно в галактической плоскости, но далеко от ядра Галактики: ближе к окраине Галактики, чем к центру. Ядро Галактики наблюдается на небе как большое яркое облако Млечного Пути в созвездии Стрельца. Однако это, по всей видимости, край обширной области ядра. Основная часть ядра скрыта от земных наблюдателей темной материей — «угольным мешком». Общие очертания ядра были зарегистрированы лишь аппаратурой, чувствительной к тепло­вым, инфракрасным лучам. Этого впервые добились советские ученые на Крымской астрофизической обсерватории.

Звезды в галактической плоскости медленно вращаются вокруг ядра Галактики. При вращении твердого тела, велосипедного колеса например, все точки делают один оборот за одно и то же время. Точ­ка, которая находится дальше от центра, движется быстрее. Вращение Галактики происходит иначе: чем дальше звезда от центра, тем медленнее ее движение.

Ньютон установил, что небесное тело, находящееся в поле тяготения другого, более массивного небесного тела, движется вокруг него по замкнутой эллиптической орбите. Так движутся вокруг планет их спутники. Однако движение звезд вокруг центра Галактики, хотя оно тоже подчиняется закону всемирного тяготения, происходит по гораздо более сложным траекториям.

Поле тяготения внутри Галактики определяется не единой центральной притягивающей массой, которая значительно превосхо­дит все остальное, как, например, в Солнечной системе, а складыва­ется из суммарного действия всей совокупности входящих в нее звезд. В этом случае каждая отдельная звезда движется вокруг центра Галактики не по эллипсу, а по сложной кривой, которая имеет вид цветка со многими лепестками. Лепестки могут располагаться в разных плоскостях, а траектории движения звезд в подавляющем большинстве случаев оказываются даже незамкнутыми кривы­ми — звезды практически никогда не возвращаются на старое место относительно центра Галактики. Пути звезд могут скрещиваться и пересекаться. Вообще говоря, звезды могут даже встретиться друг с другом, только вероятность таких событий исчезающе мала.

Судите сами. Не будем учитывать общую скорость движения соседей Солнца вокруг центра Галактики. Рассмотрим только их движения по отношению, друг к другу. В сравнении с расстояниями между звездами их взаимные движения крайне медленны. Пусть движение звезд — это ползание медлительных улиток. Длину собственного тела они проползают часов за двадцать. Улитка Солнце находится в Москве. Тогда соседи Солнца окажутся: улитка Сириус в Витебске, улитка Процион у Минска, улитка Толимак вбли­зи Бологого, а улитка Альтаир в Воркуте. Ползут они в разные стороны. Можно ли при этих условиях рассчитывать на встречу?

Отрезки времени, в которых удобно описывать вращение звезд в галактиках, очень велики — это миллионы и миллиарды лет.

Солнце движется вокруг центра Галактики со скоростью 250 км/с и совершает один обход вокруг него примерно за 200—250 млн. лет. Высказывались предположения, что смена геологических эпох, наступление ледниковых периодов и другие гигантские катаклизмы в истории Земли связаны именно с «космическим климатом», т. е. с положением Солнца относительно ядра Галактики. Подобно тому как из-за наклона земной оси ежегодное обращение Земли вокруг Солнца приводит к регулярной смене времен года, так и враще­ние Солнца вокруг ядра Галак­тики вызывает будто бы анало­гичные изменения, только в гораздо более крупных масшта­бах. Эти предположения пока не подтверждены и не опроверг­нуты. Они остаются гипотезой.

Солнце — самая близкая к нам звезда. Сила тяготения Солнца заставляет обращаться вокруг него и Землю, и другие планеты.

Солнце — это гигантский пылающий газовый шар. Объем его превосходит объем Земли в 1.300 тыс. раз. Температура внутри Солнца может дости­гать 15.000.000 К.

Астрономы обнаружили на Солнце все те же элементы, которые были хорошо известны уче­ным на Земле. Только однажды на Солнце был найден ранее неиз­вестный элемент. От греческого слова «гелиос»— «солнце» — новый элемент назвали гелием. Впоследствии гелий был обнаружен в небольших дозах в земной атмосфере. Теперь он с успехом служит наполнителем в многочисленных светящихся рекламных трубках.

Именно скопление на Солнце огромного количества гелия пролило в дальнейшем свет на источники, казалось бы, неисчерпае­мой солнечной энергии.

За счет чего, действительно. Солнце способно непрерывно излучать в окружающее пространство чудовищный поток лучистой энергии? Будь Солнце просто раскаленным газовым шаром, оно остыло бы всего за несколько десятков миллионов лет. Но растительная жизнь на Земле — так свидетельствует геология — су­ществует по крайней мере миллиард лет. Жизнь нуждается в солнечной энергии. И стало быть, за последний миллиард лет энергия Солнца не истощилась.

Геологические изыскания не оставляют места для тревог, что Солнце остывает. Больше того, по данным геологов, древнейшие оледенения бывали даже более мощными, чем последующие.

Астрономы долго искали источник солнечной энергии — то «горючее», которое непрерывно обогревает всю Солнечную систему. Обнаружить его удалось только в связи с успехами ядерной физики. В центральной области солнечного шара в силу колоссальных температур и давлений ядра атомов с сорванными электронными оболочками тесно прижимаются друг к другу, и в этих условиях начинает идти термоядерная реакция перехода водорода в гелий. В глубоких недрах Солнца идет та самая реакция, о которой тщетно мечтали средневековые алхимики, — реакция превращения одного химического элемента в другой.

Солнце — сгусток пылающей материи — является колоссаль­ным природным атомным реактором. В течение миллиардов лет этот реактор перерабатывает собственное вещество.

Современная наука также сумела воспроизвести эту «солнечную» реакцию, но, к сожалению, еще не научилась управлять ею. Мы знакомы с ней только в неуправляемой форме, при взрыве; реакция превращения водорода в гелий происходит при взрыве водородной бомбы.