Смекни!
smekni.com

Квазары (стр. 2 из 4)

Другие астрономы считают, что у квазаров имеют­ся особые источники энергии, о которых мы пока еще просто не можем судить из-за трудности наблю­дений и недостаточности имеющихся данных.

Но как бы там ни было, открытие квазаров—бес­спорно, одно из самых замечательных достижений аст­рономии начала второй половины двадцатого столетия, которое может привести к пересмотру многих привыч­ных представлений. Во всяком случае, построить удов­летворительную теоретическую картину этого явления, оставаясь в рамках современных физических теорий, до сих пор не удается. Разумеется, это вовсе не означает, что встретившись с каким-либо непонятным явлением, следует немедленно отказаться от попыток объяснить его с точки зрения уже известных представлений. Но, с другой стороны, нельзя забывать и о том, что всякая довая теория берет свое начало именно с таких фактов, которые не укладываются в рамки прежних представ­лений.

Поскольку выяснение физической природы квазаров наталкивается на существенные трудности, мы вправе уже сейчас задуматься над вопросом: а что, если та­кого объяснения в рамках современных представлении получить не удастся? Очевидно, это будет означать, что переход энергии сжатия в энергию электромагнитного излучения в квазарах совершается какими-то еще не известными нам путями либо наши представления о са­мой природе квазаров и источниках их собственной энергии не вполне соответствуют действительности. Только дальнейшие астрономические исследования мо­гут разрешить эту проблему.

Во всяком случае, не исключена возможность того, что обнаружение квазаров относится к числу такого рода фактов, которыми открываются новые страницы исто­рии науки.

Квазары и радиогалактики

Прежде всего необходимо установить, являются ли квазары самостоятельными, обособленными объектами или они связаны с процессами, протекающими в так называемых галактических ядрах, т. е. центральных сгу­щениях вещества, имеющихся в целом ряде звездных островов Вселенной. Чтобы решить эту задачу, нужно самым тщательнейшим образом проанализировать су­ществующие в настоящее время данные астрономиче­ских и радиоастрономических наблюдений с тем, чтобы постараться выяснить физическую сущность процессов, происходящих в квазизвездных объектах.

Не так давно было обнаружено, что один из первых открытых астрономами квазаров, ЗС 273, обладает до­вольно сильным инфракрасным излучением. Согласно подсчетам Шкловского мощность этого излучения при­мерно в 100 раз превосходит мощность светового излу­чения ЗС273. Анализируя данные наблюдений, ученый пришел к выводу, что источник инфракрасного излуче­ния совпадает с оптическим ядром квазара. Это наво­дит на мысль, что инфракрасное и оптическое излучения ЗС 273 имеют общую природу.

Как уже упоминалось выше, мощность, которая ге­нерируется у ЗС 273 в инфракрасном и субмиллиметро­вом диапазонах, чрезвычайно велика, а размеры цент­рального ядра весьма незначительны. Но это означает, что исключительно велика и плотность излучения. При такой плотности должно иметь место особое явление, называемое обратным эффектом Комптона. Оно состоит в том, что фотоны невидимых электромагнитных излуче­ний, взаимодействуя с электронами, движущимися со скоростями, близкими к скорости света (релятивистские электроны), рассеиваются с изменением длины волны. В результате получается электромагнитное излучение в оптическом диапазоне. Таким образом, согласно выво­дам Шкловского инфракрасное и оптическое излучения квазара ЗС273 тесно связаны между cобой.

Подобное заключение позволяет сделать одно любо­пытное предсказание. Дело в том, что согласно наблю­дениям оптическое излучение ЗС 273 носит переменный характер. Но если оптическое излучение порождается более длинноволновым, невидимым инфракрасным излучением, то это последнее, очевидно, также должно быть переменным. Дальнейшие наблюдения покажут, справедливо ли подобное предсказание.

Анализ электромагнитного излучения квазаров по­зволяет установить явную аналогию между этими уди­вительными объектами и ядрами галактик, находящихся в активном состоянии—так называемых сейфертовских галактик. Ядра таких галактик имеют весьма малые размеры, сравнимые с размерами квазизвездных объ­ектов, и подобно им обладают чрезвычайно мощным электромагнитным излучением. Правда, это излучение главным образом сосредоточено в инфракрасном диапа­зоне, но точно такое же явление, как мы уже видели, наблюдается и у типичного квазара ЗС 273. Это дает все основания предполагать, что в ядрах сейфертовских га­лактик, например, галактики NGC 1275, находятся «не­видимые квазары».

Астрономические наблюдения показывают, что ядра сейфертовских галактик содержат большое количество возбужденного и ионизованного газа, т. е. такого газа, частицы которого потеряли часть своих электронов и приобрели благодаря этому электрический заряд. Но какова причина подобной ионизации, что ее вызывает? Эта проблема, весьма важная для понимания физиче­ских явлений, происходящих в радиогалактиках, до недавнего времени была довольно далека от своего решения. Однако наличие квазаров в ядрах сейфер­товских галактик проливает определенный свет на этот вопрос.

Как мы уже знаем, благодаря высокой плотности из­лучения квазаров в них действует обратный комптон-эффект. Подсчеты, проведенные Шкловским для галак­тики NGC 1275, показывают, что в результате рассеяния инфракрасных и субмиллиметровых фотонов здесь дол­жно возникать весьма мощное рентгеновское излучение. Этого жесткого излучения вполне достаточно для иони­зации газов в ядре любой сейфертовской галактики. Можно предполагать, что аналогичные явления должны иметь место также и в ядрах других сейфертовских га­лактик, например NGC 1068, NGC7469 и NGC 3227. В связи с этим, по мнению Шкловского, было бы инте­ресно попытаться обнаружить излучение их ядер в диа­пазоне 8 и 4 мм.

Всесторонний анализ материалов, имеющихся в рас­поряжении современной оптической и радиоастрономии, по мнению Шкловского, позволяет сделать вывод, что квазары и ядра сейфертовских галактик представляют собой сходное явление. Во всяком случае, физическая природа этих объектов одинакова, а отличия сводятся к масштабам происходящих процессов. Не исключена также возможность, что эти объекты находятся в раз­ных фазах своей эволюции.

Какова же физическая сущность активности галак-тических ядер? Вероятно, в таких ядрах происходят взрывы, которые сопровождаются сильными выбросами больших газовых масс. Мощность подобного взрыва для различных галактик может изменяться в довольно широких пределах. Но, видимо, явление, о кото­ром идет речь, должно происходить в любой галактике на определенной стадии ее эволюции. В частности, вполне возможно, что в свое время наша Галактика, так же как и другие подобные ей гигантские спиральные звездные острова, переживала стадию активности ядра и относилась, таким образом, к классу сейфертовских галактик.

О явном сходстве квазаров с явлениями, происходя­щими в ядрах некоторых галактик, говорят и резуль­таты исследований бюраканского астронома Б. Е. Мар-каряна. Еще в 1963 г. он опубликовал интересную ра­боту, посвященную изучению особого класса галактик. Эти звездные системы обладают ядрами, которые зна­чительно голубее, чем ядра большинства других галак­тик, имеющих такую же форму.

Маркарян пришел к выводу, что голубые ядра ис­следованных им галактик отличаются также аномально сильным излучением в ультрафиолетовой части спектра.

Чем же можно объяснить необычные характер излу­чения и цвет центральных областей таких галактик? На этот вопрос может быть два ответа: либо эти звездные системы обладают необычным звездным составом либо в их ядрах происходят необычные процессы. Очевидно, и в том и в другом случаях подобные звездные системы заслуживают особенно пристального внимания.

В первой работе Маркаряна было исследовано 40 ано­мальных галактик. Однако чтобы получить возможность сделать какие-либо выводы, следовало не только расширить этот список, но попытаться выяснить, нет ли по­добных галактик в отдаленных областях пространства.

С этой целью в Бюраканской обсерватории был на­чат систематический обзор неба с помощью метрового рефлектора, снабженного специальными призмами для изучения спектров слабых космических объектов. Пер­вая серия наблюдения охватила области созвездий Большем Медведицы и Жирафа и район северного по­люса нашей Галактики. В результате помимо аномаль­ных «ультрафиолетовых» галактик, входивших в преж­ний список, было обнаружено еще 70 объектов подобного типа. И вообще, статистические подсчеты показывают, что галактики с необычным ультрафиолетовым излуче­нием составляют, по-видимому, не менее 5% от общего числа всех галактик.

Любопытно, что у многих «ультрафиолетовых» галак­тик наблюдаются слабые оболочки или короны, отростки или небольшие хвосты, а иногда и слабые голубые спутники. Подобные придатки, видимо, могли возник­нуть в результате выброса вещества из ядер таких звездных систем. Это говорит о том, что значительная часть «ультрафиолетовых» галактик в настоящее время переживает последующую за выбросом эпоху, как го­ворят астрономы, послеэруптивную стадию.

Наибольший интерес представляет вопрос о проис­хождении аномального ультра4)иолетового излучения. Хотя окончательный ответ на него может быть получен лишь в результате всестороннего тщательного изучения необычных звездных систем, уже и на основании имею­щихся данных можно сделать некоторые предваритель­ные выводы.

Оказалось, что все «ультрафиолетовые» галактики по характеру их спектров можно разделить на две группы. У галактик одной группы спектры похожи, на спектры некоторых звезд и квазаров, у галактик дру­гой—на спектры ярких ассоциаций.

Анализ спектров показывает, что ультрафиолетовое излучение ядер галактик второй группы может иметь чисто звездное происхождение.