Смекни!
smekni.com

Множини і відношення (стр. 8 из 12)

При n=1 відношення RÍM називають одномісним або унарним. Таке відношення часто називають також ознакою або характеристичною властивістю елементів множини M. Кажуть, що елемент aÎM має ознаку R, якщо aÎR і RÍM. Наприклад, ознаки "непарність" і "кратність 7" виділяють із множини N натуральних чисел унарні відношення R¢ = {2k-1 | kÎN } і R¢¢ = {7k | kÎN }, відповідно.

Найбільш популярними в математиці є двомісні або бінарні відношення, на вивченні властивостей яких ми зупинимось детальніше. Далі скрізь під словом "відношення" розумітимемо бінарне відношення. Якщо елементи a,bÎM знаходяться у відношенні R (тобто (a,bR), то це часто записують у вигляді aRb. Зауважимо, що бінарні відношення іноді розглядають, як окремий випадок відповідностей, а саме - як відповідності між однаковими множинами.

Приклад 1.13. Наведемо приклади бінарних відношень на різних множинах.

1. Відношення на множині N натуральних чисел:

R1 - відношення "менше або дорівнює", тоді 4R19, 5R15, 1R1m для будь-якого mÎN ;

R2 - відношення "ділиться на", тоді 4R23, 49R27, mR21 для будь-якого mÎN ;

R3 - відношення "є взаємно простими", тоді 15R38, 366R3121, 1001R3612;

R4 - відношення "складаються з однакових цифр", тоді 127R4721, 230R 4 302, 3231R 43213311.

2. Відношення на множині точок координатної площини R2:

R5 - відношення "знаходяться на однаковій відстані від початку координат", тоді (3,2) R5 (,-), (0,0)R 5 (0,0) ;

R6 - відношення "симетричні відносно осі ординат", тоді (1,7)R6(-1,7) і взагалі (a,b)R6(-a,b) для будь-яких a,bÎR ;

R7 - відношення "менше або дорівнює". Вважаємо, що (a,b)R7(c,d), якщо a£c і b£d. Зокрема, (1,7)R7(20,14), (-12,4)R7(0,17).

3. Відношення на множині студентів даного вузу:

R8 - відношення "є однокурсником",

R9 - відношення "є молодшим за віком від".

Для задання відношень можна користуватись тими ж способами, що і при заданні множин. Наприклад, якщо множина M скінченна, то довільне відношення R на M можна задати списком пар елементів, які знаходяться у відношенні R.

Зручним способом задання бінарного відношення R на скінченній множині M = {a1,a2,...,an} є задання за допомогою так званої матриці бінарного відношення. Це квадратна матриця C порядку n, в якій елемент cij, що стоїть на перетині i-го рядка і j-го стовпчика, визначається так

ì 1, якщо aiRaj,

cij = í

î 0, в противному разі.

Приклад 1.14. Для скінченної множини M = {2,7,36,63,180} матриці наведених вище відношень R1, R2, R3мають такий вигляд

Рис.1.5.

Оскільки відношення на M є підмножинами множини M 2, то для них означeні всі відомі теоретико-множинні операції. Наприклад, перетином відношень "більше або дорівнює" і "менше або дорівнює" є відношення "дорівнює", об’єднанням відношень "менше" і "більше" є відношення "не дорівнює", доповненням відношення "ділиться на" є відношення "не ділиться на" тощо.

Аналогічно відповідностям для відношень можна означити поняття оберненого відношення і композиції відношень.

Відношення R-1 називається оберненим до відношення R, якщо bR-1a тоді і тільки тоді, коли aRb. Очевидно, що (R-1)-1=R. Наприклад, для відношення "більше або дорівнює" оберненим є відношення "менше або дорівнює", для відношення "ділиться на" - відношення "є дільником".

Композицією відношень R1 і R2 на множині M (позначається R1°R2 ) називається відношення R на M таке, що aRb тоді і тільки тоді, коли існує елемент cÎM, для якого виконується aR1c і cR2b. Наприклад, композицією відношень R1 - "є сином" і R2 - "є братом" на множині чоловіків є відношення R1°R2 - "є небожем".


Наведемо список важливих властивостей, за якими класифікують відношення.

Нехай R - деяке відношення на множині M.

а). Відношення R називається рефлексивним, якщо для всіх aÎM має місце aRa.

Очевидно, що відношення R1,R2,R4,R5,R7 - рефлексивні.

б). Відношення R називається антирефлексивним (іррефлексивним), якщо для жодного aÎM не виконується aRa.

Відношення "більше", "менше", "є сином" антирефлексивні. В той же час, відношення R6не є ні рефлексивним, ні антирефлексивним.

Всі елементи головної діагоналі матриці C для рефлексивного відношення на скінченній множині M дорівнюють 1, а для антирефлексивного відношення дорівнюють 0.

в). Відношення R називається симетричним, якщо для всіх a,bÎM таких, що aRb маємо bRa.

г). Відношення R називається антисиметричним, якщо для всіх a,bÎM таких, що aRb і bRa маємо a = b.

Наприклад, відношення R3,R4,R5,R6,R8 - симетричні, а відношення R1,R2,R7 - антисиметричні.

Неважко переконатись, що відношення R симетричне тоді і тільки тоді, коли R=R-1.

д). Відношення R називається транзитивним, якщо зі співвідношень aRb і bRc випливає aRc.

Наприклад, відношення R1,R2,R4,R5,R7,R8,R9 - транзитивні, а відношення R3,R6 - не транзитивні.

Неважко переконатись, що відношення R транзитивне тоді і тільки тоді, коли R°RÍR.

Зауважимо, якщо відношення R має будь-яку з перерахованих вище властивостей, то обернене відношення R-1 також має ту саму властивість. Таким чином, операція обернення зберігає всі п'ять властивостей відношень.

Для довільного відношення R означимо нову операцію. Відношення R* називається транзитивним замиканням відношення R на M, якщо aR*b, a,bÎM, тоді і тільки тоді, коли у множині M існує послідовність елементів a1,a2,...,an така, що a1 = a, an = b і a1Ra2, a2Ra3,...,an-1Ran.

Наприклад, нехай M - це множина точок на площині і aRb, a,bÎM, якщо точки a і b з'єднані відрізком. Тоді cR*d, c,dÎM, якщо існує ламана лінія, яка з'єднує точки c і d.

Можна довести, що відношення R транзитивне тоді і тільки тоді, коли R*=R.

Деякі відношення займають особливе місце в математиці. Розглянемо ці відношення окремо.

12. Відношення еквівалентності

Відношення R на множині M називається відношенням еквівалентності (або просто еквівалентністю), якщо воно рефлексивне, симетричне і транзитивне.

Враховуючи важливість відношення еквівалентності, дамо розгорнуте означення цього поняття. Таким чином, відношення R на множині M є відношенням еквівалентності або евівалентністю, якщо

1. aRa для всіх aÎM (рефлексивність);

2. Якщо aRb, то bRa для a,bÎM (симетричність);

3. Якщо aRb і bRc, то aRc для a,b,cÎM (транзитивність).

Приклад 1.15. 1. Відношення рівності iM на будь-якій множині M є відношенням еквівалентності. Рівність - це мінімальне відношення еквівалентності, бо при видаленні бодай одного елемента з iM відношення перестає бути рефлексивним, а отже, і відношенням еквівалентності.

2. Відношення рівнопотужності множин є еквівалентністю.

3. Важливу роль відіграє в математиці відношення "мають однакову остачу при діленні на k" або "конгруентні за модулем k", яке є відношенням еквівалентності на множині N натуральних чисел для будь-якого фіксованого kÎN. Відношення конгруентності за модулем k часто позначають aºb (mod k). Цьому відношенню належать, наприклад, пари натуральних чисел (17,22), (1221,6), (42,57) для k=5, тобто 17 º 22(mod 5), 1221 º 6 (mod 5), 42 º 57 (mod 5).

4. Еквівалентністю є відношення подібності на множині всіх трикутників.

Сукупність множин { Bi | iÎI} називається розбиттям множини A, якщо Bi=A і BiÇBj = Æ для i¹j. Множини Bi, iÎI є підмножинами множини A і називаються класами, суміжними класами, блоками або елементами розбиття. Очевидно, що кожний елемент aÎA належить одній і тільки одній множині Bi, iÎI.

Припустимо, що на множині M задано відношення еквівалентності R. Виконаємо таку побудову. Виберемо деякий елемент aÎM і утворимо підмножину SaR = { x | xÎM і aRx}, яка складається з усіх елементів множини M еквівалентних елементу a. Відтак, візьмемо другий елемент bÎM такий, що bÏSaR і утворимо множину SbR = { x | xÎM і bRx } з елементів еквівалентних b і т.д. Таким чином одержимо сукупність множин (можливо, нескінченну) {SaR,SbR,...}. Побудована сукупність множин { SiR | iÎI} називається фактор-множиною множини M за еквівалентністю R і позначається M/R.