План
Диференціал функції.
Геометричний зміст диференціала.
Лінеаризація функції.
Диференціал складної функції.
Повний диференціал функції декількох змінних.
Достатні умови диференційованості функції.
Рівняння дотичної площини до поверхні і нормалі.
Інваріантність форми диференціала.
Диференціювання функцій, заданих параметрично.
Неявні функції, їх диференціювання.
1. Диференціал функції
1.1 Означення диференційованої функції
Означення. Функція називається диференційованою в точці , якщо її приріст в цій точці можна зобразити в такому вигляді:
(6.48)
де - число, а прямує до нуля, коли приріст прямує до нуля.
Означення. Функція називається диференційованою в точці , якщо її повний приріст в цій точці можна зобразити в такому вигляді:
(6.49) де
- числа; і - нескінченно малі при (при ).
Теорема. Для того щоб функція в точці була диференційованою, необхідно і достатньо, щоб для неї в цій точці існувала скінчена похідна . При виконанні цієї умови рівність (6.48) має місце, коли стала дорівнює саме цій похідній:
(6.50)
Наслідок. Якщо функція в точці має (скінчену) похідну, то в цій точці функція необхідно неперервна.
Дійсно, із (6.50) зрозуміло, що з умови випливає .
Для функції двох змінних умова диференційованості жорстокіша, ніж існування частинних похідних в точці.
Теорема (необхідна умова диференційованості). Функція диференційована в точці , неперервна в цій точці і має в ній частинні похідні за обома змінними.
Теорема (достатня умова диференційованості). Якщо функція має частинні похідні за змінними і якщо ці частинні похідні неперервні в цій самій точці , то функція диференційована в цій точці.
Зауваження. Функція (всякого числа змінних), диференційована в кожній точці деякої області, називається диференційованою в цій області.
1.2 Диференціал
Диференціал функції однієї змінної . Зазначимо, що доданки в рівності (6.50) відіграють неоднакову роль. Так, другий додаток при є величина вищого порядку малості, ніж ,
тоді як перший доданок , якщо і , є величина одного порядку малості з . Крім того, другий доданок в рівності (6.50) при і є величина вищого порядку малості, ніж перший,
Отже, перший доданок в рівності (6.50) є головною частиною приросту функції.
Означення. Добуток називається диференціалом функції в точці і позначається символом або ,
, . (6.51)
Диференціалом аргументу називається його приріст, тобто вважають . Тоді формула для диференціала функції набирає вигляду
,
або
(6.52)
Користуючись співвідношенням (6.52), складемо таблицю для диференціалів від елементарних функцій:
1. , .
2. , .
3. , .
4. , .
5. , .
6. , .
7. , .
8. , .
9. , .
10. , .
11. , .
12. , .
13. , .
14. , .
15. , .
16. , .
17. , .
18. , .
Властивості диференціала. Якщо і - диференційовані функції, то безпосередньо із визначення диференціала і властивостей похідних маємо такі властивості диференціала:
1) (),
2) ,
) ,
4) .
Геометричний зміст диференціала. Нехай графік диференційованої функції має вигляд, зображений на рис. 6.6 (крива ).
Візьмемо на кривій точки і . У точці проведемо дотичну до кривої . Тоді з трикутника знайдемо довжину відрізка :
або
. (6.53)
Рівність (6.53) і характеризує геометричний зміст диференціала: диференціал функції дорівнює приросту ординати дотичної до графіка цієї функції в розглядуваній точці.
Рис.6.6
Механічний зміст диференціала. Припустимо, що матеріальна точка рухається за відомим законом
де - диференційована функція при деякому значенні часу . Тоді функція має диференціал
,або .
Добуток виражає шлях, який точка проходить за час , рухаючись із сталою швидкістю .
Отже, механічне тлумачення диференціала функції таке: диференціал функції виражає той шлях, який точка пройшла б за час , якби вона рухалася прямолінійно і рівномірно зі сталою швидкістю .
6.6.3. Повний диференціал функції двох змінних
Означення повного диференціала. Нехай функція в деякій області неперервна і має частинні похідні та .
Виберемо в цій області довільну точку . Надамо приросту обом аргументам, тобто візьмемо точку
. Для приросту
одержуємо такий вираз:
(6.54)
При і останні два доданки є нескінченно малими вищого порядку, оскільки і . Перших два доданки складають головну частину у виразі повного приросту .
Означення. Головна, лінійна відносно і частина приросту функції називається повним диференціалом функції двох змінних і позначається або :
. (6.55)
(Легко бачити, що це означення приводить до введеного вище поняття диференціала функції однієї змінної, якщо замість розглядати функцію ).
Приклад. Знайти повний диференціал функції .
Р о з в ’ я з о к.
В будь-який точці .
Зауваження. Означення повного диференціала легко узагальнюється на випадок диференційованої функції будь-якого числа змінних.
Повним диференціалом функції в даній точці називається головна, лінійна відносно приросту всіх аргументів частина повного приросту функції.
Приклад. .
Р о з в ' я з о к.
В будь-які й точці
.
Означення дотичної площини і нормалі до поверхні. Є кілька еквівалентних між собою означень дотичної площини до поверхні. Ми дамо означення, яке є природним узагальненням означення дотичної (прямої) до кривої (рис. 6.7).
Нехай - точка даної поверхні. Розглянемо на поверхні другу, змінну точку і проведемо січну пряму .
Площина, що проходить через точку , називається дотичною площиною до поверхні в точці , якщо кут між січною і цією площиною прямує до нуля, коли віддаль прямує до нуля, яким би чином точка на поверхні не прямувала б до точки .
Нормаллю до поверхні в точці називається пряма, що проходить через точку перпендикулярно до дотичної площини до поверхні в цій точці.
Рівняння дотичної площини і нормалі. У поверхні, заданої рівнянням , де - функція, диференційована в точці , дотична площина в точці існує і має рівняння
. (6.56)
За рівнянням дотичної площини до поверхні в точці легко записати рівняння нормалі:
. (6.57)
Геометричний зміст повного диференціала. Нехай функція диференційована в точці . Це означає, що поверхня, задана рівнянням , має в точці дотичну площину (рис. 6.8). Її рівняння (6.56),
Рис.6.7 Рис.6.8
поклавши ; , можна записати у вигляді
.
У цьому рівнянні зліва стоїть різниця аплікат точок дотичної площини, відповідних точкам і , а справа – повний диференціал функції в точці .
Отже, повний диференціал функції в точці геометрично означає приріст аплікати дотичної площини до поверхні, яка зображує функцію, в точці при переході із точки в точку .
Інваріантна форма запису диференціала. За означенням, для диференційованої в точці функції двох незалежних змінних
.
Покладемо, зокрема, (тобто ), одержимо Отже, . Аналогічно, поклавши , одержимо . Таким чином, диференціали незалежних змінних співпадають з приростом цих змінних, і ми можемо записати диференціал функції у вигляді
,
або, що те саме,
.
Нехай де і - складні функції незалежних змінних і . Допустимо, що функції і диференційовані в точці , а функція диференційована в точці , де , . Тоді складна функція буде диференційована в точці . При цьому, згідно з (6.58),
.
Застосувавши правила для обчислення частинних похідних
складної функції (формули 6.47), одержимо
Оскільки в дужках стоять повні диференціали функцій , , маємо:
.
Отже, і у випадку, коли та - незалежні змінні, і у випадку, коли та - незалежні змінні, диференціал функції можна записати у формі
.
У зв’язку з цим така форма запису повного диференціала називається інваріантною.
Форма запису повного диференціала
не буде інваріантною, вона може використовуватися лише, якщо і - незалежні змінні, оскільки у противному разі , .
6.7. Диференціювання параметрично заданих функцій
Означення. Задання функціональної залежності між і у вигляді двох функцій від тієї самої допоміжної змінної називається параметричним заданням функції. Допоміжна змінна при цьому називається параметром.
Виведемо формулу для похідної від функції, заданої параметрично. Припустимо, що функції, заданої параметрично. Припустимо, що функції і диференційовані в кожній точці інтервалу і для цих значень функція така, що похідна від неї не дорівнює нулю, .
Тоді для кожної функції існують диференціали , звідки
, (6.59)
або
.
Приклад. Знайти похідну від функції, яка задана параметрично, , .
Р о з в ’ я з о к. Знайдемо і :
,
;
.
6.8. Неявні функції, їх диференціювання
Розглянемо випадок неявної функції від однієї незалежної змінної . Нехай дано рівняння .
Припустимо, що це рівняння визначає єдину і при цьому диференційовану функцію аргументу . Для цього повинні виконуватись певні умови, доведення яких опускається.
Теорема. (теорема існування неявної функції). Нехай:
1) функція означена і неперервна разом із своїми частинними похідними та в деякому околі точки ;
2) в точці дорівнює нулю:
;
3) в точці відмінна від нуля: .
Тоді
1) в деякому прямокутнику
рівняння визначає як однозначну функцію від : ;
2) при ця функція набуває значення :
;
3) на інтервалі функція неперервна і має неперервну похідну.
Знайдемо цю похідну. Оскільки у вказаному інтервалі , то для будь-якої її точки або, що те саме, , де .
Обчислюючи повну похідну, маємо
,
звідки
. (6.61)
Приклад. Знайти похідну функції .
Р о з в ’ я з о к.
.
Нехай задано рівняння
(6.62)
і при цьому виконуються умови, аналогічні умовам 1) - 3). Можна
довести, що рівняння (6.62) визначає в деякому околі точки площини єдину і питому диференційовану функцію , яка набуває значення при , .
Частинні похідні такої функції обчислюються за формулами:
; . (6.63)
Розглянемо деякі застосування теорії неявних функцій. Нехай плоска крива задана рівнянням в точці записується у вигляді