Энергию излучения можно подсчитать по известной формуле Эйнштейна: Е = тс2, где Е — энергия; т — масса и с — скорость света в пустоте. Масса ядра водорода составляет 1,008 (атомных единиц массы), поэтому масса 4 протонов равна 4 • 1,008 = 4,032 а. е. м. Масса образовавшегося ядра гелия составляет 4,004 а. е. м. Уменьшение массы водорода на величину 0,028 а. е. м. (это составляет 5*10-26 г) приводит к выделению энергии, равной:
Солнце является также источником излучения радиоволн. Общая мощность радиоизлучения Солнца в диапазонах волн от 8 мм до 15 м невелика. Такое радиоизлучение “спокойного” Солнца исходит от хромосферы и короны и является тепловым излучением. Когда же на Солнце появляются в большом количестве пятна, факелы и протуберанцы, мощность радиоизлучения увеличивается в тысячи раз. Особенно большие всплески радиоизлучения “возмущенного” Солнца возникают в периоды сильных вспышек в его хромосфере.
СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ И ФИЗИЧЕСКАЯ ПРИРОДА ЗВЕЗД
Разнообразные и важные сведения о физической природе звезд, которыми располагает современная астрономия, были получены по результатам изучения излучаемого ими света. Изучение природы света производится методами фотометрии и спектрального анализа.
В середине XIX столетия французский философ-идеалист Огюст Конт утверждал, что химический состав небесных светил останется навсегда неизвестным для науки. Однако вскоре методами спектрального анализа на Солнце и звездах были открыты химические элементы, известные на Земле.
В наше время изучение спектров позволило не только установить химический состав звезд, но также измерить их температуры, светимости, диаметры, массы, плотности, скорости вращении и поступательных движений, а также определить расстояния до тех далеких звезд, тригонометрические параллаксы которых являются по малости их недоступными для измерений.
Физическая природа звезд весьма различна, а поэтому и их спектры отличаются большим разнообразием. Звезды, как и Солнце, имеют непрерывные спектры, пересеченные темными линиями поглощения, а это и доказывает, что каждая звезда есть раскаленное газовое тело, дающее непрерывный спектр и окруженное более холодной атмосферой.
Линии звездных спектров отождествлены с линиями известных на Земле химических элементов, что служит доказательством материального единства Вселенной. Все звезды состоят из одних и тех же химических элементов, преимущественно из водорода и гелия.
Причина большого различия звездных спектров определяется не столько различием химического состава звезд, сколько различной степенью ионизации вещества звездных атмосфер, определяемой в основном температурой. Современная классификация звездных спектров, созданная на Гарвардской обсерватории (США) по результатам изучения более чем 200 000 звезд, основана на отождествлении принадлежности линий поглощения известным химическим элементам и оценке их относительной интенсивности.
При всем разнообразии звездных спектров их можно объединить в небольшое число классов, содержащих сходные между собой признаки и постепенно переходящих один в другой с образованием непрерывного ряда. Основные классы гарвардской классификации обозначены буквами латинского алфавита О, В, А, F, G, К, М, образующими ряд, соответствующий уменьшению температур звезд. Для детализации спектральных показателей в каждом классе введены десятичные подразделения, обозначаемые цифрами. Обозначению А0 соответствует типичный спектр класса А; А5 обозначает спектр, средний между классами А и F;A9 — спектр, гораздо более близкий к F0, чем к А0.
В таблице приведены характеристики спектров, соответствующие им температуры и типичные звезды по каждому из спектральных классов.
Спектральный класс | Характеристика спектра поглощения | Температура поверхности | Типищые звезхы |
0 | Линии ионизованных гелия, | 35 000° | К Орпона |
(голубые звезды) | азота, кислорода и кремния | ||
В | Линии гелия и водорода | 25000° | Спика |
(юлубовато-бслые | |||
звезды) | |||
А | Линии водорода имеют мак | 10000° | Сиричс |
(белые звезды) | симальную интенсивность. За | ||
метны линии ионизованного | |||
кальция. Появляются слабые | |||
линии поглощения металлов | |||
Р | Линии водорода ослабевают. | 7500° | Проц: он |
(желтоватые звезды) | Интенсивны линии нейтрально | ||
го и ионизованного кальция. | |||
Линии металлов постепенно | |||
усиливаются | |||
0 | Линии водорода еще более | 6000° | Солные |
(желтые звезды) | ослабевают. Многочисленные | ||
линии поглощения металлов | |||
К | Линии металлов очень интен | 4500° | Аркт-у-р |
(оранжевые звезды) | сивны. Интенсивна полоса угле | ||
водорода СН. Слабые линии | |||
поглощения окиси титана ТЮг | |||
М | Линии нейтральных металлов | 3500° | Бетел.- |
(красные звезды) | очень сильны. Интенсивны по | гейзе | |
лосы поглощения молекулярных | |||
соединений |
Кроме основных спектральных классов, существуют дополнительные классы R, N, S немногочисленных звезд, температура которых ниже 3000°.
Приведенные в таблице температуры относятся к поверхностным слоям звезд, в недрах их господствуют температуры порядка 10—30 млн. градусов. Высокая температура обеспечивает протекание самопроизвольных ядерных реакций, т. е. процессов, рассмотренных ранее.
Цвет звезды зависит от ее температуры. Холодные звезды излучают преимущественно в длинных волнах, соответствующих красной части спектра, а горячие — в коротких волнах, представляемых фиолетовой частью спектра.
Человеческий глаз наиболее восприимчив к желто-зеленым лучам, и обычная фотографическая пластинка — к синим и фиолетовым лучам спектра. Вследствие этого при наблюдении звезд визуальным и фотографическим методами для одной и той же звезды получают различные звездные величины.
В астрономии цвет измеряют, сравнивая величины звезды, определенные визуально и по фотографиям, и оценивают его показателем цвета, который представляет собой разность фотографической и визуальной величин звезды:
Зависимости между показателями цвета и спектрами звезд устанавливаются эмпирически. Составляют таблицу, из которой по показателю цвета звезды приближенно определяют ее спектральный класс.
Основными факторами, определяющими количество излучаемой энергии, являются температура и площадь излучающей поверхности звезды. Исследование спетимостей звезд привело к разделению их на две характерные группы: звезды-гиганты и звезды-карлики. Звезды-гиганты обладают высокой светимостью и большой площадью излучения (большим объемом), но имеют малую плотность вещества. Звезды-карлики характеризуются низкой светимостью, малым объемом и значительной плотностью вещества.
Различие между гигантами и карликами наиболее резко проявляется у звезд спектральных классов М и К, у которых разница в светимости достигает 9m_10m, т. е. красные гиганты в 5—10 тыс. раз ярче красных карликов. У желтоватых и желтых звезд классов F и G наряду с гигантами и карликами многочисленны также и звезды промежуточных светимостей.
Для характеристики светимостей звезд впереди прописной буквы их спектрального класса дополнительно пишутся малые буквы: g — для звезд-гигантов и d — для звезд-карликов. Капелла gG0 — гигант класса G0, Солнце dG3 — карлик класса G3 и т. д.
СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ВОЗНИКНОВЕНИИ И ЭВОЛЮЦИИ ЗВЕЗД
Раздел астрономии, в котором изучаются вопросы происхождения и развития небесных тел, называется космогонией. Космогония исследует процессы изменения форм космической материи, приводящие к образованию отдельных небесных тел и их систем, и направление их последующей эволюции. Космогонические исследования приводят и к решению таких проблем, как возникновение химических элементов и космических лучей, появление магнитных полей и источников радиоизлучения.
Решение космогонических проблем связано с большими трудностями, так как возникновение и развитие небесных тел происходит столь медленно, что проследить эти процессы путем непосредственных наблюдений невозможно; сроки протекания космических событий так велики, что вся история астрономии в сравнении с их длительностью представляется мгновением. Поэтому космогония из сопоставления одновременно наблюдаемых физических свойств небесных тел устанавливает характерные черты последовательных стадий их развития.
Недостаточность фактических данных приводит к необходимости оформлять результаты космогонических исследований в виде гипотез, т.е. научных предположений, основанных на наблюдениях, теоретических расчетах и основных законах природы. Дальнейшее развитие гипотезы показывает, в какой мере она соответствует законам природы и количественной оценке предсказанных ею фактов.