Детальная интерпретация кривой вращения п нахождение па нее распределения плотностей р внутри галактики требуют дальнейшего уточнения. Для этого необходимо принять модель галактики: плоскую или модель в виде неоднородного сфероида, в котором поверхности постоянной плотности — подобные сфероиды, или еще более сложную форму.
R – радиус; G – гравитационная сила.
Массы эллиптических и массы спиральных галактик можно оцепить в случае пар — двойных галактик, у которых разность глобальных скоростей можно предполагать равной скорости обращения, как у спектрально-двойных звезд. Однако здесь остается неизвестным угол наклона орбиты, и кривую скоростей определить нельзя. Мы получаем лишь нижний предел суммы масс двух галактик, как в случае спектрально-двойных звезд.
Выше было освещен ряд относящихся сюда вопросов, но надо добавить еще многое.
Форма спиральных ветвей, как оказалось, хорошо соответствует логарифмической спирали
r =r(0) ехр (ca),
где a =pj:180 и c = сtgm, или
lg r =lg r(0)+ccj,
где с =(p/180)*lg e=0,00758.
Здесь m — характеристический угол между радиусом-вектором точки спирали и касательной к ней. Конечно, тут имеется ввиду истинная форма ветвей в их плоскости, а не форма, искаженная проекцией. В среднем m = 73° и варьирует в пределах 54—86°. Первое значение соответствует широко раскрытым ветвям, второе относится к спиралям, приближающимся к окружности.
Бывает, что ветви имеют несколько различные формы. Встречаются галактики с тремя-четырьмя ветвями и такие, у которых есть ветви внутренние и внешние, или “многорукавные”. Вернее сказать, у последних ветви не сплошные, а состоят из дуг, не связанных друг с другом. Двух- и даже трехъярусные спиральные галактики свидетельствуют о сложности этих явлений природы. Еще ранее Хаббл обнаружил, что есть галактики с “перекладиной” — по-английски “бар”,— в центре которой находится их ядро, а спиральные ветви отходят от концов бара, но есть и такие, в которых ветви отходят от середины бара; последние представляют трудность для теории, считающей ветви “истечением” из бара. Обнаружено течение газа от ядра вдоль бара со скоростями до 100 км/с. В области спиральных ветвей в большинстве случаев вращение близко к твердотельному, и точка перегиба на кривой вращения находится там, где ветви уже не прослеживаются, хотя свечение системы тянется еще далеко. Нередко ветви отходят не от бара, а от периферии кольца, для которого бар является диаметром.
Много дебатов вызывал вопрос о направлении вращения галактик — идет ли оно так, что ветви при этом “волочатся” или, наоборот, “разматываются”. Это важно для теории их происхождения. Острота вопроса сгладилась, когда обнаружили галактики, имеющие одновременно ветви противоположных направлений, т.е. одни “волочащиеся”, другие “разматывающиеся”. Если вращение почти твердотельно, то нет помех для возникновения ветвей любой формы.
Хаббл ввел обозначения для простых спиралей — S, для “пересеченных спиралей” (с баром) — SВ. Для промежуточных форм (очень короткий бар) вводились обозначения SАВ или другие. Неправильные галактики он обозначал через I или Ir, но существует две их разновидности. Эллиптические галактики по Хабблу обозначаются буквой Е с прибавлением цифры от 1 до 7, которая указывает степень сжатия, определяемую отношением
10(a-b) : а,
где а и b — видимые диаметры (обычно искаженные для нас проекцией). Потом он нашел “линзовидные” галактики с “балджем” (большим ядром), окруженным диском, в котором спиралей нет. Он их обозначил S0. Дальнейшие наблюдения показали, что классификация Хаббла не отражает всего многообразия существующих форм и свойств галактик, и было предложено несколько других классификаций, еще быстрее “отстававших от жизни”, и мы на них останавливаться не будем.
Хаббл ввел еще следующие важные дополнения. Сейчас им приходится придавать другой, более глубокий смысл, чем предполагал Хаббл. Аморфные, бесструктурные спиральные ветви, не содержащие сверхгигантов и бедные газом, отмечаются приставкой а(Sа). Очень клочковатые ветви с множеством горячих звезд-гигантов и богатые газовыми туманностями — приставкой с(Sс), а спирали промежуточного вида отмечаются приставкой b(Sb). Такова М 31 (Sb), а М 33 есть Sс. Наша Галактика может относиться к типу Sbс — промежуточная спираль. У Sс ядра значительно меньше, чем у Sb. Но у Sа, вопреки мнению Хаббла, они бывают разными.
После многих попыток теоретически объяснить существование спиральных галактик при наличии не строго твердотельного вращения очень популярной стала теория, основы которой заложили Лин и Шу в 60-е годы.
Большой интерес представляет знание того, как галактики распределяются по светимостям, что в некоторой степени отражает их распределение и по массе, так как при одинаковом составе входящих в них звезд масса пропорциональна светимости. Это положение более оправдано для однотипных галактик, в особенности дтя эллиптических, у которых нет большого различия ни в структуре, ни в цвете. Но сперва пытались получить общую картину для всех типов галактик вместе, и тогда казалось, что карликовых галактик с абсолютной величиной М = — 16 (в степени m) и меньше мало. Но потом открыли довольно много очень слабых и мелких галактик в окрестностях нашей Галактики.
Пространственную структуру галактик типов Е и S0 можно узнать, вычисляя пространственные плотности в функции радиуса из результатов точной фотометрии их поверхностной яркости. Яркость, измеренная в точках вдоль видимого радиуса, создается излучением всех звезд, лежащих на луче нашего зрения — на хордах сфероида. От яркости в проекции можно перейти при условии наличия центральной симметрии к объемной яркости.
Строение Метагалактики, скопления.
Отдельные галактики часто объединены в пары сравнимых друг с другом систем или состоят из одной большой галактики и одного или даже нескольких спутников с меньшими светимостью, размерами и массами.
Можно заметить и немногочисленные группы галактик. Некоторые из них, чаще часть их членов,— лишь случайные проекции галактик, расположенных ближе или дальше. Наиболее тесными парами и группами с членами, безусловно связанными друг с другом физически, являются взаимодействующие системы — гнезда и цепочки систем.
Наконец, существуют скопления галактик как бедные и рассеянные, так и богатые, концентрирующиеся к центру скопления сотен и многих тысяч галактик.
Много усилий прилагается к попыткам обнаружить скопления галактик — системы, которые стали бы единицами высшего порядка в качестве “кирпичей” Метагалактики. Реальное существование их пока не доказано
В скоплениях сильно преобладают эллиптические Е и линзовидные галактики S0, а в общем поле между ними многочисленны спирали.
Двойные галактики. Хольмберг в Швеции составил каталог двойных и кратных галактик в количестве около 8007, но, к сожалению, современным требованиям он не удовлетворяет. Во всяком случае, гипотезу Хольмберга, что двойные галактики возникают в результате гравитационного захвата, надо оставить. По современным представлениям пары, группы и скопления галактик, как таковые, возникали на ранних стадиях их образования.
И. Д. Караченцев ввел понятие об изолированных галактиках, видимое расстояние между которыми в пять или более раз меньше расстояния до другой ближайшей галактики, и составил каталог 603 пар.
Надо заметить, что в любом каталоге таких галактик нет сведений о расстоянии от нас до каждой компоненты, и потому нет уверенности в реальной близости их компонент друг к другу. Поэтому И. Д. Караченцев и другие астрономы упорно работаюли над определением красного смещения компонент. Из них они находят и разности скоростей компонент, помогающие оценить массу систем и отношение у них массы к светимости.
Масса пары галактик пропорциональна квадрату разности их скоростей (предполагается, что их движение орбитально) и расстоянию между компонентами. Но мы не знаем наклона к лучу зрения орбиты и длины линии, соединяющей компоненты, и поэтому пользуемся средними, вероятнейшими их величинами. Пейдж в США, получивший скорости многих пар, показал, что массы, определенные этим методом, на порядок больше масс, которые могли бы быть найдены из изучения вращения галактик или дисперсии скоростей в них. Более точные измерения скоростей в САО на 6-метровом телескопе это различие в определении масс устраняют. Половина “изолированных пар” состоит из взаимодействующих галактик. По Уайту типичный орбитальный период в парах составляет 200 • 106 лет, а типичное расстояние между ними около 40 кпс. До 15% всех галактик входит в пары, но пока еще трудно уточнить процент оптических пар вследствие случайной проекции. Эксперименты И.Д. Караченцева и А. Л. Щербановского с использованием ЭВМ показали, что оптических пар только около 10%, но число это зависит от условий определения понятия двойственности.
Группы. Хольмберг выделял из поля тройные и кратные галактики. Как ни определять их, число объектов быстро убывает с переходом ко все большей кратности. С другой стороны, выделяют группы галактик; например, Вокулер дал список 54 групп и их членов. Но эти весьма обширные группы содержат до десятков членов, переходя, вероятно, в бедные скопления, бедные скопления переходят в богатые, состоящие из сотен, а может быть, десятков тысяч членов. Почти ни для одной группы, даже малочисленной, нет сведений о лучевой скорости каждого члена. Из нескольких данных часто можно сделать заключение, что, применив теорему о вириале, мы получим положительную энергию, указывающую на неустойчивость группы. В. А. Амбарцумян трактует это как признак молодости таких групп и считает их молодыми.